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Abstract

In recent years, small, easily manageable, operated, and maintained Unmanned
Aerial Vehicles (UAVs) have become ubiquitous in an every-growing set of industrial,
humanitarian, scientific, and commercial domains. For large-scale remote sensing
and mapping applications, small fixed-wing platforms provide the advantages of
longer range and higher speeds, with respect to their Micro-Aerial Vehicle (MAV)
counterparts. However, today’s fixed-wing UAVs are largely limited to a primitive
set of basic waypoint following and pre-programmed tasks, with little awareness
of the environment in which they fly, adaptability to changing conditions, or
higher-level decision making capabilities. Particularly relevant to small fixed-wing
mission profiles, is the required ability to operate safely near uncertain terrain while
disturbed by possibly strong and turbulent wind fields. Enabling these activities
entails the design of efficient, robust, and more adaptable motion planning and
control algorithms which moreover adhere to the vehicle’s restrictive dynamic flight
envelope. The primary goal of this thesis is to develop practical control and local
re-planning strategies for low-flying, small, fixed-wing UAVs with explicit awareness
of these environmental hazards.
Part A of this thesis addresses the challenge of guiding small, low-speed fixed-

wing aircraft in strong winds. Our first contribution in this part is the unique
consideration of excess winds, i.e. wind speeds that exceed the vehicle’s nominal
airspeed, within a lateral-directional control law for fixed-wing UAVs. We develop
a principled, nonlinear guidance law which guarantees convergence to a safe and
stable vehicle configuration with respect to the wind field while preserving some
tracking performance with respect to the path target. We then expand on this
concept by including an energy efficient airspeed reference compensation logic,
enabling not only mitigation, but also prevention or over-powering of excess winds
which would otherwise cause the aircraft to “run-away”. We emphasize heavily in
this second iteration on field testing results, demonstrating track keeping errors
of less than 1 m consistently maintained during gusting excess winds over various
mountainous regions in Switzerland. The third component of this part revisits the
efficiency of the airspeed references. A coupled approach to airspeed and heading
reference commands is developed with a more principled consideration of airspeed
reference minimization. The coupled method is compared against the previous
decoupled approach in simulations showing both increased power-efficiency and
tracking performance in static and dynamic winds.
Part B of this thesis operates as a road map to fast, environment-aware local

re-planning for fixed-wing UAVs operating near terrain. We first delve into the
practicalities of deploying a guidance level Nonlinear Model Predictive Controller
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Abstract

(NMPC) on a small fixed-wing platform. We develop new control augment model-
ing methods featuring reduced order models of the underlying low-level autopilot
response and quasi-steady forces, simple parameter identification procedures, and
open loop predictability on the order of tens of seconds, making our modeling
approach suitable for long horizon NMPC. Through flight experiments, we demon-
strate Dubins aircraft path segment tracking in three dimensions with wind speeds
exceeding 50 % of the vehicle’s airspeed, and further show a mock motor failure
scenario. A particular focus is further spent on soft constraint formulation. The
third component of this part reworks the developments of the first two towards
our local re-planning formulation. Wind-aware reference trajectory generation is
developed from the guidance logic in Part A for lateral-directional states, and verti-
cal wind is included in the longitudinal guidance. Vision-based elevation mapping
is utilized to to provide a generalized 2.5D world representation to the aircraft.
The map is bilinearly interpolated for height feedback, and we design an efficient
ray casting approach for detection of forward (line of flight) and lateral occlusions.
The occlusions are used to construct novel “relative” Euclidean Signed Distance
Fields (RESDFs), which are a function of the relative velocity between the vehicle
and obstacle. We further present a method of transforming the RESDFs into
optimizable soft constraints for the objective function of the NMPC. A preliminary
example of the full system acting to avoid an obstructing hillside is demonstrated
in hardware-in-the-loop (HITL) simulation.
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Zusammenfassung

In den letzten Jahren sind kleine, leicht handhabbare, betriebene und gewartete
Unbemannte Luftfahrzeuge (Engl. Unmanned Aerial Vehicles, UAVs) in einer
ständig wachsenden Zahl von industriellen, humanitären, wissenschaftlichen und
kommerziellen Bereichen allgegenwärtig geworden. Für gross angelegte Fernerkundungs-
und Kartierungsanwendungen bieten kleine Starrflügel-Plattformen gegenüber ihren
Pendants, den Micro-Aerial Vehciles (MAV), die Vorteile einer grösseren Reichweite
und höherer Geschwindigkeiten. Die heutigen Starrflügel-UAVs beschränken sich
jedoch weitgehend auf eine primitive Reihe grundlegender Aufgaben mit Weg-
punktverfolgung und vorprogrammierten Aufgaben, mit limitiertem Bewusstsein
für ihre Flugumgebung, geringer Anpassungsfähigkeit an sich ändernde Bedingun-
gen, und nur rudimentärer Entscheidungsfähigkeit auf höherer Ebene. Besonders
relevant für kleine Starrflügelmissionsprofile ist die erforderliche Fähigkeit, in un-
sicherem Gelände zuverlässig zu operieren, während sie durch möglicherweise starke
und turbulente Windfelder gestört werden könnten. Um diese Aktivitäten zu er-
möglichen, müssen effiziente, robuste und anpassungsfähigere Bewegungsplanungs-
und Steuerungsalgorithmen entwickelt werden, die sich zudem an den restriktiven
dynamischen Flugbereich des Luftfahrzeugs halten. Das primäre Ziel dieser Arbeit
ist die Entwicklung praktischer Steuerungs- und lokaler Umplanungsstrategien für
niedrig fliegende, kleine Starrflügel-UAVs mit explizitem Bewusstsein für Umweltge-
fahren.
Teil A dieser Arbeit befasst sich mit der Herausforderung, kleine, langsam

fliegende Starrflügelflugzeuge bei starkem Wind zu steuern. Unser erster wis-
senschaftlicher Beitrag in diesem Teil ist die erstmalige Berücksichtigung Berücksich-
tigung von überkritischen Winden, d. h. die Nenngeschwindigkeit des Luftfahrzeugs
überschreiten, im Rahmen eines Gesetzes zur Steuerung von Starrflügel-UAVs in
Querrichtung. Wir entwickeln ein theoretisch fundiertes, nichtlineares Steuergesetz,
das die Konvergenz zu einem sicheren und stabilen Systemzustand im Bezug auf
das Windfeld garantiert und gleichzeitig die Leistungsfähigkeit in Bezug auf das
Bahnziel beibehält. Wir erweitern dieses Konzept durch die Einbeziehung einer en-
ergieeffizienten Kompensationslogik für die Fluggeschwindigkeitsreferenzwerte, die
nicht nur eine Entschärfung, sondern auch die Prävention oder das “Über-Powern”
von Situationen mit überkritischem Wind ermöglicht, die sonst ein “Wegfliegen” des
Flugzeugs verursachen würde. In dieser zweiten Iteration legen wir grossen Wert
auf die Ergebnisse von Feldtests über verschiedenen Bergregionen der Schweiz, bei
denen die Pfadabweichung selbst beim kurzzeitigen Auftreten von böigem Überwind
durchgehend bei unter einem Meter gehalten werden konnte. Die dritte Komponente
dieses Teils befasst sich erneut mit der Effizienz der Fluggeschwindigkeitsreferenzen.

iii



Zusammenfassung

Es wird ein gekoppelter Ansatz für Geschwindigkeits- und Kursreferenzkommandos
entwickelt, wobei die Minimierung der Fluggeschwindigkeitsreferenzen theoretisch
fundierter betrachtet wird. Die gekoppelte Methode wird in Simulationen mit dem
vorherigen entkoppelten Ansatz verglichen, wobei sowohl eine erhöhte Effizienz als
auch eine verbesserte Nachführleistung bei statischen und dynamischen Winden
erkennbar wird.
Teil B dieser Arbeit dient als Fahrplan hin zu einer schnelle, umweltbewusste

lokale Neuplanung von Flugtrajektorien unter Einbezug eines Umgebungsmod-
ells, wie sie gerade für geländenah operierende UAVs von Bedeutung ist. Wir
befassen uns zunächst mit den praktischen Möglichkeiten des Einsatzes eines Non-
linear Model Predictive Controller (NMPC) für die Flugführung einer kleinen UAV
Plattform. Wir entwickeln neue, durch Ansätze aus der Regelungstechnik erweit-
erte Modellierungsmethoden. Diese beinhalten reduzierte Modelle der grundle-
genden Autopilotenreaktionen und quasistationären Kräfte, enthalten einfache
Verfahren zur Parameteridentifikation, und erlauben eine Vorhersage des open-loop
Flugführungsverhaltens des UAVs bis zu einem Zeithorizont von über 10 Sekunden.
Dadurch sind diese Modellierungsmethoden auch für NMPCs mit langem Vorher-
sagehorizont nutzbar. Durch Flugexperimente demonstrieren wir die Verfolgung
von Dubins-Flugbahnsegmenten in drei Dimensionen mit Windgeschwindigkeiten,
die 50 Prozent der Fluggeschwindigkeit des UAVs übersteigen. Darüber hinaus
zeigen wir ein Szenario mit einem nachgeahmten Motorausfall. Ein besonderer
Schwerpunkt wird weiterhin auf die Formulierung weicher Randbedingung gelegt.
Die dritte Komponente dieses Teils überarbeitet die Entwicklungen der ersten
beiden im Hinblick auf unsere Methode zur lokalen Neuplanung von Trajektorien.
Methoden zur Berechnung von Referenztrajektorien unter Beachtung eines Wind-
modells werden für die lateralen Trajektorienkomponenten basierend auf Teil A
dieser Arbeit entwickelt, während für die longitudinale Flugführung ein Modell des
vertikalen Winds einbezogen wird. Die auf Kamerabildern und computergestütztem
Sehen basierende Höhenkartierung wird verwendet, um dem Flugzeug eine verall-
gemeinerte 2,5D-Weltdarstellung zu liefern. Die Karte wird zum Bezug exakter
Höhendaten bilinear interpoliert. Ein effizienter Raycasting Ansatz zur Erkennung
von vorwärtsgerichteten (Fluglinie) und seitlichen Okklusionen wird präsentiert.
Die Okklusionen werden zur Konstruktion neuartiger “relativer” euklidischer Dis-
tanzfelder (s.g. Euclidean Signed Distance Fields or (R)ESDFs) verwendet, die eine
Funktion der Relativgeschwindigkeit zwischen UAV und Hindernis sind. Wir stellen
ferner eine Methode zur Umwandlung der RESDFs in optimierbare weiche Randbe-
dingung für die Kostenfunktion der NMPC vor. Die Effektivität des Gesamtsystems
zur Vermeidung von Hindernissen wird, beispielhaft für einen die Flugroute des
UAVs obstruierenden Berghang, in einer Hardware-In-The-Loop (HITL) Simulation
demonstriert.

iv



Acknowledgements

During the last years, it’s been my pleasure to work with so many extremely
motivated, talented, and genuine people. ASL is like nowhere else I’ve seen in
academia, and I’m very grateful for the time I’ve been allowed to spend here.

I would like to first express my deep gratitude to Prof. Dr. Roland Siegwart for
taking a chance on a random guy from Kansas City and giving me the opportunity
to pursue a PhD in ASL, and further for always encouraging the fixed-wing team’s
“risky” research ideas, no matter where in the world they took us! I’d like to further
thank Prof. Dr. Kostas Alexis for pushing me in the first year of my PhD and
for remaining a reliable colleague and friend, even once we switched places across
the ocean. Thanks to Prof. Dr. Lorenzo Marconi for agreeing to co-examine my
thesis, as well as sharing your theoretical expertise for the windy control work even
early on. I also cannot speak highly enough of Dr. Juan Nieto, your unending
encouragement truly kept me going, especially towards the latter stages of thesis
write-up.

To the “older” (..we’re all still 25, right?) fixed-wing guys.. Dr. Philipp Oetter-
shagen, Amir Melzer, Thomas Mantel, Timo Hinzmann – I’ve learned an incredible
amount working with each of you, and would never have finished this PhD without
your support and engagement. I’ve enjoyed all the time we spent in the field, even
when watching planes fly in circles.. and more circles... and even more circles.
To the new(er) fixed(and/or tilt-able)-wings, Florian Achermann, David Rohr, Dr.
Nick Lawrance, it’s been great working with you, and I believe with your new ideas
and motivations the fixed-wing team is heading in exciting new directions. To
Michael Hugentobler, thank you for getting me home safely from Greenland! A
very special thanks to Jonas Langenegger, Tizian Steiger, and Yves Allensprach, for
always safely landing the plane(s), no matter how many crazily windy mountain
tops I took you to! And extra thanks specifically to Herr Rainer Lotz for following
the team to the ends of the earth to pilot the AtlantikSolar. Dr. Igor Gilitschenski,
your impenetrable positivity throughout even the lowest times of project integra-
tion weeks was outstanding. Dr. Guillaume Jouvet, the ideas and glaciological
applications you’ve brought to ASL have sparked some of my favorite projects and
challenges throughout my PhD, it was a pleasure working with you!
I also want to thank the many extremely dedicated and talented students I

had the opportunity to supervise, with a special mention to Gian Heinrich, David
Rohr, Silvan Fuhrer, Carl Olsson, Adyasha Dash, and Luca Furieri, who took
on challenging thesis topics as well as my high expectations and exceeded them
substantially. It was a pleasure working with and learning from each of you.
Sebastian Verling, I always enjoyed “talking shop” about nerdy aerospace stuff;

v



Acknowledgements

thanks for posing so many thought provoking discussions, and of course the invites
to Friday beer. Dr. Mina Kamel, it was a pleasure shooting back and forth ideas
about UAV control, I always learned something new when we spoke. Dr. Helen
Oleynikova, thank you for being a good friend and forcing me to take my eyes off
of work on occasion. Dr. Dario Bellicoso, Thursday night jam sessions were my
favorite two hours of the week. Vassilios Tsounis, Adyasha Dash, and Karen Bodie,
thanks for going with me to concerts, out for coffee, beer, or food (not mutually
exclusive), and keeping me sane!

I’m sure I’ve likely missed some people.. six years is a long time.. but thank you
to everyone else who made this time great!
Last, I’m truly grateful for my friends and family back home, who put up with

my distance and still ping in often to make sure I’m doing okay.

Summer, 2020 Thomas Stastny

Financial Support
The research leading to these results has received funding from the European
Commission project SHERPA (#600958) under the 7th Framework Programme,
the Federal office armasuisse S+T under project number n◦050-45 and the ETH
Foundation Grant ETH-12 16-2 (Sun2Ice Project).

vi



Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

Preface 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Contributions 9
2.1 Part A: Handling High Winds . . . . . . . . . . . . . . . . . . . . . 9
2.2 Part B: Model Predictive Control & Local Re-Planning . . . . . . 11
2.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 List of Supervised Students . . . . . . . . . . . . . . . . . . . . . . 17

A. HANDLING HIGH WINDS 21

Paper I: Gone with the Wind: Nonlinear Guidance for Small Fixed-Wing
Aircraft in Arbitrarily Strong Windfields 23
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 The Lower Wind Case . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 The Higher Wind Case . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Flight Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Appendix: Stability Proof for High Wind Case . . . . . . . . . . . 43

Paper II: On Flying Backwards: Preventing Run-Away of Small, Low-Speed,
Fixed-Wing UAVs in Strong Winds 49
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2 Bearing Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Contents

3 Directional Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Airspeed Reference Compensation . . . . . . . . . . . . . . . . . . 61
5 Flight Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6 Discussion & Future Work . . . . . . . . . . . . . . . . . . . . . . . 66

Paper III: Wind Fighting Efficiency Revisited: Coupling Airspeed and Head-
ing Guidance for Fixed-wing UAVs 71
1 Background & Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2 Windy Guidance Fundamentals . . . . . . . . . . . . . . . . . . . . 72
3 Coupling Heading and Airspeed References . . . . . . . . . . . . . 76
4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . 85

B. MODEL PREDICTIVE CONTROL & LOCAL RE-PLANNING 89

Paper IV: Nonlinear MPC for Fixed-Wing UAV Trajectory Tracking: Imple-
mentation and Flight Experiments 91
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3 Flight Dynamics & Identification . . . . . . . . . . . . . . . . . . . 96
4 Nonlinear Model Predictive Control . . . . . . . . . . . . . . . . . 100
5 Simulations & Flight Experiments . . . . . . . . . . . . . . . . . . 102
6 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . 106

Paper V: Nonlinear Model Predictive Guidance for Fixed-Wing UAVs Using
Identified Control Augmented Dynamics 109
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2 Control Augmented Modeling . . . . . . . . . . . . . . . . . . . . . 111
3 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4 Control Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5 Flight Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . 134

Paper VI: An Outlook on Environment-Aware Local Re-Planning for Safe
Near-Terrain Operation of Fixed-wing UAVs 139
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2 “Outsmarting” the Optimizer: Safe Objectives for Long Horizons . 144
3 Terrain Interpretation from Vision-based Elevation Maps . . . . . 153
4 NMPC Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 161
5 Hardware-in-the-Loop Simulation . . . . . . . . . . . . . . . . . . . 165
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9 Conclusion & Outlook 177
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

viii



Contents

9.2 Research Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Bibliography 180

Curriculum Vitae 191

ix





Preface

This is a cumulative doctoral thesis and as such consists of the most relevant
publications. In addition to the individual publications an overarching introduction
is provided in Chapter 1. We start with explaining the relevance of this thesis,
followed by the objectives and the approach taken to fulfill these. For each con-
tributing publication we explain how it embeds into the overall goals of this thesis
and highlight the relevance of the research work in Chapter 2. Furthermore, we
show how each paper is related to our other publications. The publications are
then grouped into two parts – Part A and Part B – and attached. An additional
unpublished technical brief is included as a third paper in each part, which should
be seen as an addendum to its preceding content, presenting some afterthoughts of
the published work, as well as some newer preliminary, conceptual developments
and an outlook on where the research specific to the respective part is headed.
We close this thesis by a summary of the achievements and provide a cumulative
outlook for future research directions in Chapter 9.
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Chapter1
Introduction

1.1 Motivation

In recent years, small, easily manageable, operated, and maintained Unmanned
Aerial Vehicles (UAVs) have become ubiquitous in an every-growing set of industrial,
humanitarian, scientific, and commercial domains. Widespread use of small UAVs
for aerial photogrammetric mapping includes precision agriculture [69], disaster
management [61], or some limited scientific applications in mountainous terrain [8].
For large-scale remote sensing and mapping applications, small fixed-wing platforms
provide the advantages of longer range and higher speeds, with respect to their
Mirco-Aerial Vehcile (MAV) counterparts. However, today’s fixed-wing UAVs are
largely limited to a primitive set of basic waypoint following and pre-programmed
tasks, with little awareness of the environment in which they fly, adaptability to
changing conditions, or higher-level decision making capabilities.

The Autonomous Systems Lab (ASL) has pioneered the development and applica-
tion of small-scale Low Altitude Long Endurance (LALE) solar-powered UAVs, such
as AtlantikSolar. The platform has demonstrated perpetual endurance capabilities
and holds an 81.5 hour flight endurance world record [60]. More recently, Atlantik-
Solar conducted remote sensing missions in the Arctic for glacier monitoring1 where
it experienced heavy rotors within the fjords, pushing the aircraft up to 50 meters
above and below the commanded flight path; climb and descent rates reaching
±7 m s−1 despite automatic throttle cuts and spoiler deployment and full throttle,
respectively. Strong valley winds over the sea-ice, at times, exceeded the aircraft’s
maximum airspeed, though, fortunately, in a tail-wind orientation, see Fig. 1.1. We
note that all severe wind conditions experienced were not forecast by meteorological
services, nor is it currently possible to accurately predict low altitude, turbulent
terrain induced flows. Especially important in the case of near terrain scanning

1https://sun2ice.ethz.ch/
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1 Introduction

Figure 1.1: Influence of terrain-based wind fields on small UAVs. (Left) Atlantik-
Solar en-route to Bowdoin Glacier, Northwest Greenland, over the Arctic sea-ice.
(Center) Bowdoin scanning mission flight trajectory. Flight logs – heavy vertical
up- and downdrafts causing large altitude deviations (Top-Right) and tail-wind
greater than the vehicle’s maximum cruise speed (Bottom-Right).

missions, where mountain walls may lie on either side of the vehicle, slope winds
and rotors are a paramount danger to the aircraft.
Winds are not the only concern for small UAVs operating in the wild. During

field trials on a mountain side in Italy for the EU (FP7) Robotic Search and
Rescue project SHERPA2, ASL’s fixed-wing research platform Techpod experienced
perturbed GPS measurements in flight, see Fig. 1.2. While the multi-sensor
Extended Kalman Filter (EKF) [42] kept the plane stable for enough time that the
safety pilot could manually take-over in this incident, a longer GPS disturbance
or even a GPS outage would have most probably led to loss of airframe. This
incident illuminates the necessity for on-board perception which may inform the
aircraft of its local surroundings in the event that global references are lost. In
addition to perception, any scenario with unexpected, possibly abrupt, physical
obstructions will require fast local re-planning (deviating from the global path set
out for the mission) which still respects the particularly restricted vehicle dynamics
and constraints of fixed-wing aircraft, e.g. minimum flight speeds, turn/climb rates,
and aerodynamic stall.
To reach beyond today’s limited applications such as small-scale aerial pho-

tography, and to penetrate into applications that can be of pivotal societal and
commercial use, UAVs need to be capable of fully autonomous beyond-visual-line-
of-sight (BVLOS) operations. Safe flight in challenging terrain through detailed
on-board knowledge of the UAV’s environment is a key ingredient to this next step

2SHERPA– Smart collaboration between Humans and ground-aErial Robots for imProving
rescuing activities in Alpine environments (http://www.sherpa-project.eu/sherpa/)
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Figure 1.2: Perturbed GPS measurements at a mountainside near Isollaz, Italy.
While the multi-sensor EKF could save the plane in this incident, a longer GPS
disturbance or even a GPS outage would have most probably led to a UAV loss.

in UAV technology. Towards addressing these issues, we focus our attention on two
primary objectives:

1. Efficient guidance for small fixed-wing UAVs in strong, turbulent wind fields.

2. Fast, environment-aware local re-planning of vehicle trajectories with consid-
eration of aircraft dynamics and constraints.

Particularly, we place a heavy emphasis on field-able algorithms, requiring lightweight
computational solutions and consideration of the availability and quality of sensory
inputs on-board small fixed-wing platforms as well as how each component will
interface with the overall system. The goal of thesis is, thus, to develop practical
control and local re-planning strategies for low-flying, small, fixed-wing
UAVs with explicit awareness of environmental hazards.

1.2 Approach

To accomplish our objectives, we group this thesis into two parts. Part A focuses
on the design of lightweight control laws for efficient and safe flight in strong
winds. Part B focuses first on the development of high-level model predictive
controllers for fixed-wing UAVs considering vehicle dynamics and constraints, and
second, on incorporating environmental awareness into the controllers including
wind mitigation concepts from Part A and generalized terrain feedback from online
vision-based elevation maps.

5
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Part A: Handling High Winds

Our aim in this part is the development of a lightweight control law capable of
safely and efficiently guiding a fixed-wing aircraft to a provided reference while
explicitly considering a potentially strong and variable local wind field in which it
is flying. We address the issue in three successive stages:

Directional Guidance In this stage, the condition of excess winds is first addressed
in the development of a nonlinear path following guidance law with the
objective of, ideally, driving the vehicle to the reference position target while
trading off safely orienting to minimize run-away from the track when winds
do not allow convergence to the ideal objective. Command continuity is
ensured during all state transitions while varying between the two objectives.
The algorithm is programmed in C++ on a small flight controller and limited
flight tests are conducted to demonstrate its functionality a small fixed-wing
UAV.

Airspeed Reference Compensation While directionally guiding the aircraft with
the controller from the first stage mitigates the effect of excess winds, in
the case that extra power is available on the aircraft, airspeed references
may be increased above the nominal value to further reduce and/or prevent
run-away from the track. This stage expands the previous control law with a
parallel airspeed reference compensation logic, incrementing the commanded
airspeed as appropriate when the bearing would have otherwise been infeasible.
Extensive field tests are performed in mountainous regions of Switzerland
towards evaluating the functionality and effectiveness of the controller in
strong, gusty winds.

Coupling Heading and Airspeed References In this final stage, we re-evaluate the
efficiency of the commanded airspeed references in the prior, developing a
principled approach to airspeed reference minimization, coupling the heading
and airspeed guidance logic. A simulation study is conducted towards pre-
liminarily evaluating efficiency and track keeping performance in static and
dynamic winds, with respect to the decoupled version.

Part B: Model Predictive Control & Local Re-planning

Our overall goal in this part is to provide small fixed-wing UAVs with the ability to
safely fly near terrain with the ability to adapt to abrupt, unplanned obstructions
along their mission plan. This objective involves tight coordination between on-
board, real-time perception, mapping, planning, and control algorithms, especially
considering the particularly restrictive dynamics and constraints of fixed-wing
vehicles. We focus our efforts mostly on system modeling and motion planning,
then end with a preliminary look into how on-board environmental perception may
be interpreted and utilized directly in the control loop.
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1.2 Approach

Nonlinear Model Predictive Control for Fixed-Wing UAVs Leveraging recent ad-
vances in auto-code generation of fast, efficient embedded nonlinear solvers,
e.g. the ACADO Toolkit [30] or FORCES3, we design a guidance-level Non-
linear Model Predictive Controller (NMPC) for fixed-wing UAVs. A control
augmented modeling approach is developed which takes a “middle road” be-
tween full classical identification of aircraft aerodynamics and kinematics-only
model-free formulations by considering low-order models of the low-level au-
topilot’s attitude response dynamics and identifying quasi-steady, momentless
aerodynamic and thrust models. The resulting models are easy to identify
and predictive on the order of tens of seconds, allowing their utilization in
longer NMPC horizons with the trust that optimized trajectories will be
adequately tracked. An objective is formulated for simultaneous tracking
of Dubins Aircraft path segments and airspeed setpoints while respecting
angle of attack constraints. Flight experiments are conducted to evaluate
Dubins aircraft path segment tracking in three dimensions with wind speeds
exceeding 50 % of the vehicle’s airspeed, and further show how the controller
handles a mock motor failure scenario.

Environment-Aware Local Re-Planning We approach the problem of fixed-wing
terrain avoidance by re-evaluating and expanding the previously developed
long-horizon NMPC, incorporating generalized terrain feedback to the objec-
tive function. A wide-baseline stereo vision solution suitable for fixed-wing
UAVs [28] is used to provide real-time sensory input of the environment which
is fused to the cells of a 2.5D elevation map, providing a scalable representa-
tion for large outdoor environments. With an elevation map being populated
on the fly, we implement an efficient means of interpreting the grid through
height look-ups and radial ray casting, constructing local “relative” Euclidean
Signed Distance Field (RESDF), which considers not only the distance to
terrain in the map, but also the relative approach velocity of the aircraft, only
building distance fields where the aircraft is currently planning to fly. The
RESDF is directly incorporated in the NMPC objective function, providing a
generalized representation of obstacles which may adapt over time and space,
without the need for any further shape abstraction (e.g. planes or spheres) or
tedious collision checking through point clouds along trajectories. Wind-aware
reference trajectory generation is designed using the developments in Part A.
We preliminarily evaluate our full system in hardware-in-the-loop (HITL),
forcing the vehicle to avoid an abruptly detected hillside obstructing the
globally planned path.

3https://www.embotech.com/FORCES-Pro
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Chapter2
Contributions

This chapter details the contributions of each of the papers presented as part of this
cumulative thesis. We describe the context of the paper at the time of publication,
the scientific contribution, and how it relates to the rest of the thesis and our other
publications. Additionally, we provide a list of all authored and co-authored papers
published over the course of our doctoral studies as well as a summary of supervised
student theses and projects.

2.1 Part A: Handling High Winds

The following papers relate to the development of guidance strategies, robust to
strong winds, for small, fixed-wing UAVs.

Paper I
Luca Furieri, Thomas Stastny, Lorenzo Marconi, Roland Siegwart, and Igor
Gilitschenski, “Gone with the Wind: Nonlinear Guidance for Small Fixed-Wing
Aircraft in Arbitrarily Strong Windfields”. In American Control Conference, 2017.

Context

Small, fixed-wing UAVs are especially susceptible to strong winds. However, until
recent years, widespread deployment of automatic fixed-wing platforms was limited
enough to where the idea that an aircraft may move negatively with respect to the
ground was not considered. Winds were at most considered minor, low frequency
disturbances in aeronautical literature to be rejected either by robust control
techniques or simply feeding back inertial velocities to guidance loops, where the
wind is implicitly contained within this measurement. Flight in more inclement
weather was simply avoided.
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2 Contributions

With the goal of deploying small UAVs, e.g. within the context of the AtlantikSolar
project1, for remote long-range and/or long-endurance missions, so came the
inevitability that the aircraft would encounter a variety of environmental conditions,
specifically high winds and gusts. To be able to use such systems safely and
efficiently, it was necessary to consider these conditions directly at the guidance
level of control, explicitly taking into account online wind estimates.

Contribution

This paper developed, to our best knowledge, the first guidance law for fixed-wing
aircraft considering the unique condition of excess winds, i.e. the case where wind
speed rises above the vehicle’s nominal airspeed. We design a principled, nonlinear
guidance strategy guaranteeing convergence to a safe and stable vehicle orientation
with respect to the wind, while still preserving some tracking performance with
respect to the desired position target. We evaluate the control law in simulations
and limited flight experiments, confirming the feasibility of the approach. Stability
of the closed loop system is analyzed with a formal geometric argument for the
excess wind case, and nonlinear phase portraits for the lower-wind case.

Interrelations

This paper forms the base on which Papers II and III build and improve upon.

Paper II
Thomas Stastny and Roland Siegwart, “On Flying Backwards: Preventing Run-Away
of Small, Low-Speed, Fixed-Wing UAVs in Strong Winds”. In IEEE International
Conference on Robots and Intelligent Systems (IROS), 2019.

Context

While the developed controller in Paper I showed promise in mitigating the effect
of strong winds, in the case the aircraft may have remaining energy available, the
airspeed reference could be increased above the nominal value to further reduce,
or even prevent run-away from the track. Our aim in this paper was to design an
efficient guidance strategy which returned the vehicle to the track.

Contribution

In this work, an efficient airspeed compensation logic was developed for small,
fixed-wing UAVs enabling either mitigation, prevention, or over-powering of excess
winds. Enhancements to the directional guidance from Paper I were made including
a reformulation of the “bearing feasibility” function, which indicates how feasible a
given bearing command is in the present wind state, and new condition independent

1http://www.atlantiksolar.ethz.ch/
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2.2 Part B: Model Predictive Control & Local Re-Planning

tuning strategies. The combined parallel guidance laws were, at the time, the
first example in literature of an algorithm considering both excess wind conditions
as well as providing a means of fully preventing run-away from the track. The
paper concludes with extensive flight experimentation in strong, turbulent winds in
mountainous regions of Switzerland.

Interrelations

This paper extended the baseline controller from Paper I, and is compared against
in newer developments in Paper III.

Paper III
Thomas Stastny, “Wind Fighting Efficiency Revisited: Coupling Airspeed and
Heading Guidance for Fixed-wing UAVs”. In Unpublished, 2020.

Context

This brief is an unpublished work written as a closing chapter to Part A. It includes
some afterthoughts of the two published works, as well as some newer preliminary,
conceptual developments and an outlook on where the research specific to this part
is headed. The brief revisits the efficiency of the proposed airspeed compensation
logic in Paper II, exploring how taking a coupled approach to airspeed and heading
commands can not only reduce energy demands, but may further improve tracking
performance in highly variable winds.

Contribution

This brief developed a new coupled formulation for generating airspeed and heading
commands in high winds, taking a more principled consideration of airspeed reference
minimization. Simulation comparisons of the Paper II formulation and new coupled
approach were provided for static and dynamic wind scenarios which indicate
support for the hypothesis that the coupled approach both reduces energy demands
and further improves tracking performance.

Interrelations

This brief revisits the developments in Paper II, providing a conceptual development
of a new coupled airspeed and heading command logic and analyzing it against the
efficiency claims of Paper II. The formulation designed in this work is used in the
development of wind-aware trajectory generation in Paper VI.

2.2 Part B: Model Predictive Control & Local Re-Planning

The following papers relate to the design and implementation of nonlinear model
predictive control strategies for fixed-wing UAVs.
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2 Contributions

Paper IV
Thomas Stastny, Adyasha Dash, and Roland Siegwart, “Nonlinear MPC for Fixed-
Wing UAV Trajectory Tracking: Implementation and Flight Experiments”. In
AIAA Guidance, Navigation, and Control (GNC) Conference, 2017.

Context

At the time of this publication, real-time implementation of NMPCs on MAVs was
just starting to appear, with newly improved solver runtimes available from C++
auto-code-generation frameworks like the ACADO toolkit [30]. However, deployment
on fixed-wing platforms outside of simulation was non-existent. The early NMPC
work on MAVs such as in [35] and [56] showed promise for generating control
solutions to dynamic and complex trajectory tracking scenarios with consideration
of the vehicle dynamics and constraints, and we wished to investigate if similar
results could be achieved for fixed-wing platforms.
The majority of simulation-based fixed-wing literature on NMPC either used

purely kinematic models, assuming lower-level loops would sufficiently track the
higher-level commands, or assumed a full aerodynamic model of the vehicle, down
to actuators, was available and implemented whole body control. Using kinematic
models alone in the NMPC would neglect the underlying low-level control response,
leading to poor tracking of high-level commands, and full classical system identifica-
tion of aircraft either entails expensive hours in the wind tunnel, or potentially risky
open-loop maneuvering to obtain data from flight logs. We instead investigated
performing simple identification procedures for the stabilized low-level system and
integrating the autopilot response dynamic into the model of the high-level NMPC
as a means to ensure generated control solutions would be adequately tracked by
the low-level autopilot and further reduce model complexity, with respect to full
aerodynamic models, such that longer horizons could be achieved.

Contribution

This paper provides an approach for identification and modeling of the control
augmented roll channel dynamics for a small fixed-wing UAV and their incorporation
in a high-level, lateral-directional NMPC. A simulation comparison of different
horizon lengths in strong wind is provided. Flight experiments were conducted
for path following of Dubins Car segments, and were the first real-world flight
demonstration of a NMPC on fixed-wing UAVs in literature.

Interrelations

This paper was the inspiration to continue with NMPC as the controller of choice
for future local re-planning work in our subsequent papers V and VI. The imple-
mentation of the controller was further detailed and incorporated in a tutorial book
chapter [37].
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2.2 Part B: Model Predictive Control & Local Re-Planning

Paper V
Thomas Stastny and Roland Siegwart, “Nonlinear Model Predictive Guidance for
Fixed-Wing UAVs Using Identified Control Augmented Dynamics”. In International
Conference on Unmanned Aerial Systems (ICUAS), 2018.

Context

In order to generate fixed-wing motion plans which perform more dynamic maneu-
vers in three dimensions, the model and objective function from Paper IV needed to
be extended. However, longitudinal aircraft dynamics are quite dissimilar from the
lateral-directional, and common OTS autopilots stabilize pitch, while a higher-level
control loop generates pitch reference and throttle commands for airspeed and
altitude stabilization. We developed new, coupled control augmented model, also
considering quasi-steady aerodynamic and thrust forces and an objective function
suitable for stabilizing airspeed, constraining angle of attack, and driving the vehicle
to 3D Dubins Aircraft paths.

Contribution

This paper develops an approach to modeling and identification of coupled lateral-
directional and longitudinal control augmented dynamics and quasi-steady aero-
dynamic and thrust forces for a conventional fixed-wing platform with a widely
available OTS autopilot in the loop, utilizing a standard sensor suite. The models
are obtained using simple and safe parameter identification procedures, and achieve
open loop predictability on the order of tens of seconds, justifying their utility in
long horizon NMPC formulations. An objective function is developed for simulta-
neous airspeed stabilization, path following, and soft constraint handling (angle
of attack). We validate the approach in several flight experiments including path
following of helix and connected Dubins Aircraft segments in high winds as well as
a motor failure scenario.

Interrelations

This paper extends Paper IV to three dimensions. The developed approaches for
control augmented modeling and the ROS implementation are further applied for
airborne wind energy in [83]. Paper VI reformulates the developments of this work,
reducing control augmented model complexity, improving thrust modeling, and
incorporating new objectives for terrain avoidance.

Paper VI
Thomas Stastny, Timo Hinzmann, and David Rohr, “An Outlook on Environment-
Aware Local Re-Planning for Safe Near-Terrain Operation of Fixed-wing UAVs”. In
Unpublished, 2020.
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2 Contributions

Context

This brief is an unpublished work written as a closing chapter to Part B. It includes
some afterthoughts of the two published works, as well as some newer preliminary,
conceptual developments and a detailed outlook on where the research specific to
this part is headed. In this brief, we showcase some ongoing work in its preliminary
stages of development towards utilizing the developed control structures in Papers IV
and V, reconceptualizing the work as an environment-aware local re-planner.

Contribution

In this brief, we conceptually evaluate the potential of incorporating obstacles
into the NMPC formulation in the form of generalized terrain feedback. Wind-
aware reference trajectory generation is developed using the formulation presented
in III. Real-time vision-based elevation maps are used to provide a 2.5D world
representation to the aircraft, providing a “simulated” environment for the local re-
planner to optimize within. The map is bilinearly interpolated for height feedback,
and we propose an efficient ray casting approach for detection of forward (line of
flight) and lateral occlusions. Novel “relative” Euclidean Signed Distance Fields
(RESDFs) are formulated as a function of the relative velocity between the vehicle
and occlusion and a method to translate these RESDFs into optimizable soft
constraints within the NMPC objective function is developed. A preliminary
example of the full local re-planning system acting to avoid an obstructing hillside
is demonstrated in hardware-in-the-loop (HITL) simulation, all while respecting
soft angle of attack and airspeed constraints.

Interrelations

This brief draws from the developments of Papers III, IV, and V, reconceptualizing
the work as a unified environment-aware local re-planning formulation.

2.3 List of Publications

In the context of the author’s doctoral studies the following publications were
achieved. They are sorted chronologically and grouped by publication type.

Journal Papers
• D. Malyuta, C. Brommer, D. Hentzen, T. Stastny, R. Siegwart, and R.
Brockers. “Long-duration Fully Autonomous Operation of Rotorcraft Un-
manned Aerial Systems for Remote-sensing Data Acquisition”. Journal of
Field Robotics (JFR). Vol. 37(1). pp. 137–157. 2020.

• D. Rohr, T. Stastny, S. Verling, and R. Siegwart. “Attitude and Cruise
Control of a VTOL Tiltwing UAV”. IEEE Robotics and Automation Letters
(RA-L). Vol. 4(3). pp. 2683–2690. 2019.
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2.3 List of Publications

• T. Hinzmann, T. Stastny, C. Cadena, R. Siegwart, and I. Gilitschenski.
“Free LSD: Prior-free Visual Landing Site Detection for Autonomous Planes”.
IEEE Robotics and Automation Letters (RA-L). Vol. 3(3). pp. 2545–2552.
2018.

• P. Oettershagen, T. Stastny, T. Hinzmann, K. Rudin, T. Mantel, A. Melzer,
B. Wawrzacz, G. Hitz, and R. Siegwart. “Robotic Technologies for Solar-
powered UAVs: Fully Autonomous Updraft-aware Aerial Sensing for Multiday
Search-and-rescue Missions”. Journal of Field Robotics (JFR). Vol. 35(4). pp.
612–640. 2018.

• P. Oettershagen, A. Melzer, Mantel, K. Rudin, T. Stastny, B. Wawrzacz,
T. Hinzmann, S. Leutenegger, K. Alexis, and R. Siegwart. “Design of Small
Hand-launched Solar-powered UAVs: From Concept Study to a Multi-day
World Endurance Record Flight”. Journal of Field Robotics (JFR). Vol. 34(7).
pp. 1352–1377. 2017.

Book Chapters
• M. Kamel, T. Stastny, K. Alexis, R. Siegwart. “Model Predictive Control

for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating
System”. Robot Operating System (ROS), The Complete Reference (Volume
2). pp. 3–39. 2017.

Peer Reviewed Conference Papers
• C. Olsson, S. Verling, T. Stastny, and R. Siegwart. “Full Envelope System

Identification of a VTOL Tailsitter UAV”. AIAA Guidance, Navigation, and
Control (GNC) Conference. 2021. Accepted for publication.

• M. Harms, N. Kaufmann, F. Rockenbauer, N. Lawrance, T. Stastny, and
R. Siegwart. “Differential Sweep Attitude Control for Swept Wing UAVs”.
International Conference on Unmanned Aircraft Systems (ICUAS). 2020.

• T. Stastny and R. Siegwart. “On Flying Backwards: Preventing Run-
away of Small, Low-speed, Fixed-wing UAVs in Strong Winds”. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2019.

• D. Hentzen, T. Stastny, R. Siegwart, and R. Brockers. “Disturbance Estima-
tion and Rejection for High-Precision Multirotor Position Control”. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2019.

• T. Stastny, E. Ahbe, M. Dangel, and R. Siegwart. “Locally Power-optimal
Nonlinear Model Predictive Control for Fixed-wing Airborne Wind Energy”.
American Control Conference (ACC). 2019.
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2 Contributions

• S. Fuhrer, S. Verling, T. Stastny, and R. Siegwart. “Fault-tolerant Flight Con-
trol of a VTOL Tailsitter UAV”. IEEE International Conference on Robotics
and Automation (ICRA). 2019.

• J. Lee, T. Muskardin, C. Pacz, P. Oettershagen, T. Stastny, I. Sa, R.
Siegwart, and K. Kondak. “Towards Autonomous Stratospheric Flight:
A Generic Global System Identification Framework for Fixed-Wing Plat-
forms”. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2018.

• T. Stastny and R. Siegwart. “Nonlinear Model Predictive Guidance for Fixed-
wing UAVs Using Identified Control Augmented Dynamics”. International
Conference on Unmanned Aircraft Systems (ICUAS). 2018.

• L. Furieri, T. Stastny, L. Marconi, R. Siegwart, and I. Gilitschenski. “Gone
with the Wind: Nonlinear Guidance for Small Fixed-wing Aircraft in Arbi-
trarily Strong Windfields”. American Control Conference (ACC). 2017. Best
Paper Award.

• S. Verling, T. Stastny, G. Bättig, K. Alexis, and R. Siegwart. “Model-
based Transition Optimization for a VTOL Tailsitter”. IEEE International
Conference on Robotics and Automation (ICRA). 2017.

• Y. Demitri, S. Verling, T. Stastny, A. Melzer, and R. Siegwart. “Model-based
Wind Estimation for a Hovering VTOL Tailsitter UAV”. IEEE International
Conference on Robotics and Automation (ICRA). 2017.

• T. Stastny, A. Dash, and R. Siegwart. “Nonlinear MPC for Fixed-wing
UAV Trajectory Tracking: Implementation and Flight Experiments”. AIAA
Guidance, Navigation, and Control(GNC) Conference. 2017.

• P. Oettershagen, A. Melzer, T. Mantel, K. Rudin, T. Stastny, B. Wawrzacz,
T. Hinzmann, K. Alexis, and R. Siegwart. “Perpetual Flight with a Small Solar-
powered UAV: Flight Results, Performance Analysis and Model Validation”.
IEEE Aerospace Conference. 2016.

• T. Hinzmann, T. Stastny, G. Conte, P. Doherty, P. Rudol, M. Wzorek, I.
Gilitschenski, E. Galceran, and R. Siegwart. “Collaborative 3D Reconstruc-
tion Using Heterogeneous UAVs: System and Experiments”. International
Symposium on Experimental Robotics (ISER). 2016.

• P. Doherty, J. Kvarnström, P. Rudol, M. Wzorek, G. Conte, C. Berger, T.
Hinzmann, T. Stastny. “A Collaborative Framework for 3D Mapping Using
Unmanned Aerial Vehicles”. International Conference on Principles and
Practice of Multi-Agent Systems. 2016.
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2.4 List of Supervised Students

• Oettershagen, T. Stastny, T. Mantel, A. Melzer, K. Rudin, P. Gohl, G.
Agamennoni, K. Alexis, and R. Siegwart. “Long-Endurance Sensing and
Mapping using a Hand-Launchable Solar-Powered UAV”. Field and Service
Robotics (FSR). 2015.

• A. Vempati, G. Agamennoni, T. Stastny, and R. Siegwart. “Victim Detection
from a Fixed-Wing UAV: Experimental Results”. International Symposium
on Visual Computing (ISVC). 2015.

Patents
• M. Arigoni, R. Simpson, S. Fuhrer, P. Beardsley, D. Mammolo, M. Burri, M.

Bischoff, T. Stastny, L. Rodgers, D. Krummenacher, and R. Siegwart. “Ve-
hicles Configured For Navigating Surface Transitions”. US Patent 10,464,620.
2019.

2.4 List of Supervised Students

Throughout the author’s doctoral studies a large effort was spent supervising
students. For projects that contributed to a publication, a reference to the page of
the corresponding citation in Section 2.3 is given.

Master Thesis
Master student, 6 months full time

• Gian Heinrich (Spring 2020): “Learning to Stall: Using in-air Pressure Data
to Identify, Characterize, and Control Fixed-Wing Aircraft Stall”

• Dario Panzuto (Spring 2019): “Development of a Drone-Released GPS Logging
Unit for In Situ Monitoring of Fast-Flowing Glaciers”

• Michael Imobersteg (Spring 2019): “Autonomous Retraction Control of Rigid
Wing Airborne Wind Energy Systems”

• Adrian Ruckli (Spring 2019): “A Deep Learning-Based Approach to Flexible-
Wing Modeling for Wide-Baseline Stereo Vision on Fixed-Wing Unmanned
Aerial Vehicles”

• David Rohr (Autumn 2018): “Tiltwing VTOL Flight-Control System” [p. 14]

• Manuel Dangel (Autumn 2018): “Nonlinear Model Predictive Control for
Fixed-Wing Airborne Wind Energy” [p. 15]

• Silvan Fuhrer (Spring 2018): “Fault-Tolerant Flight Control of a VTOL
Tailsitter UAV” [p. 16]
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2 Contributions

• Daniel Hentzen (Spring 2018): “Robust Precision Landing for Multirotor UAS”
[p. 15]

• Matthias Epprecht (Spring 2018): “Bayesian Optimization Based Automatic
Controller Tuning for Fixed-Wing UAVs”

• Fabian Bachmann (Spring 2018): “Airflow Sensing and Control for Small
Fixed-Wing UAVs”

• Adyasha Dash (Autumn 2017): “Magnetometer Error Sources and Mitigation
for Small UAVs”

• Danylo Malyuta (Spring 2017): “Guidance, Navigation, Control and Mission
Logic for Quadrotor Full-cycle Autonomy” [p. 14]

• Jongseok Lee (Spring 2017): “Towards Autonomous Stratospheric Flight: A
Generic Global System Identification Framework for Fixed-Wing Platforms”
[p. 16]

• Carl Olsson (Spring 2017): “Full Envelope System Identification of a VTOL
Tailsitter UAV” [p. 15]

• Youssef Demitri (Autumn 2016): “Robust Operation of a Hovering VTOL
Tailsitter UAV in Wind”

• Luca Furieri (Autumn 2016): “Geometric Versus Model Predictive Control
Based Guidance Algorithms for Fixed-Wing UAVs in the Presence of Very
Strong Wind Fields” [p. 16]

• Pavel Vechersky (Autumn 2016): “Development of a Comprehensive, Hardware-
in-the-loop Simulation Environment for Fixed-wing Unmanned Aircraft”

• Nicolas El Hayek (Autumn 2016): “Ridge Lift Exploitation for Small Un-
manned Fixed-Wing Aircraft”

• Felix Renaut (Autumn 2015): “Vision-Based Autonomous Landing Site De-
tection for Fixed-Wing Unmanned Aerial Vehicles”

• Markus Thurnherr (Autumn 2014): “Model Predictive Control for Fixed-Wing
UAVs Using LPV-Models”

Semester Project
Master student, 3-4 months part time

• Ramon Flammer (Spring 2020): “Analysis of the Aerodynamic Effects on
Coaxial Rotor Configurations”
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2.4 List of Supervised Students

• Matthias Studiger (Spring 2020): “Model Predictive Longitudinal Cruise
Control of a VTOL Tilt-Wing UAV”

• Gian Heinrich (Spring 2019): “Optimizing Deep-stall Landing Maneuvers on
Small Fixed-wing UAVs”

• Cla Galliard (Spring 2019): “Nonlinear Total Energy Control System for
Longitudinal Control of an Aircraft”

• Eloi Roset (Spring 2019): “Wing Pressure Distribution Measurement for Small
Fixed-Wing UAVs”

• Marko Maljkovic (Spring 2019): “Online Neural Network Based Model Identi-
fication of a Fixed-Wing UAV”

• Jasmin Fischli (Autumn 2018): “Online Neural Network Based System Identi-
fication for Fixed-wing UAVs”

• Silvan Fuhrer (Spring 2017): “Sampling Based Motion Planning for Fixed-
Wing UAV System Identification”

• Youssef Demitri (Spring 2016): “Wind Estimation for a Hovering VTOL
Tailsitter UAV” [p. 16]

• Léonard Schai (Spring 2016): “Design, Manufacturing and Calibration of a
Miniature Vector Probe for Small, Low Speed, Unmanned Aircraft”

• Adyasha Dash (Spring 2016): “High Level Predictive Control of Fixed-Wing
UAVs using Low Order System Models” [p. 16]

• Gregory Bättig (Spring 2016): “Transition Optimization for a VTOL Tailsitter”
[p. 16]

• Samuel Dobmann (Spring 2016): “Design, Modeling, and Control of an
Autonomous Underwater Glider”

• Ricardo Zurfluh (Spring 2015): “Robust Airspeed Sensing in Harsh Environ-
mental Conditions”

Bachelor Thesis
Bachelor student, 3-4 months part time

• Severin Laasch (Spring 2020): “Impact Compensation on Multicopters using
Model Predictive Control”

• Marvin Harms & Noah Kaufmann (Spring 2019): “Differential Sweep Attitude
Control for Fixed-Wing UAVs” [p. 15]
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2 Contributions

• Friedrich Rockenbauer (Spring 2019): “Cross-Validation of Simulation Models
and Flight Test Data for Fixed-Wing UAVs”

• Marco Ruggia (Spring 2018): “Design and Analysis of Small Scale Angle of
Attack Sensors”

• Jonas Peter (Spring 2018): “System Identification for an Airborne Wind
Energy Aircraft”

• Adrian Schneebeli (Spring 2018): “Optimization of the Back-Transition Ma-
neuver for a VTOL UAV”

• Lucas Streichenberg (Spring 2018): “Improved Hover Controller for an AWE
System”

• Cla Galliard (Spring 2017): “Spherical Guidance and Control for an Airborne
Wind Energy System”

• Gabriel König (Spring 2017): “Implementation and Validation of the Transition
for a VTOL Airborne Wind Energy System”

• David Krummenacher (Spring 2015): “Floor to Wall Transitions for a Wall
Racing Robot”

• Michael Arigoni (Spring 2015): “Control of a Wall Racing Robot for Agile
Ground Maneuvers”

Studies on Mechatronics
Bachelor student, 1-2 months part time

• Flurin Schwerzmann (Autumn 2017): “On the Suitability of the Three-Surface
Configuration for Small UAVs”

Focus Project
6-8 Bachelor students, 1 year project full time

• Dipper (Fall 2018-2019): https://dipper.ethz.ch/index.html

• ftero2 (Fall 2017-2018): https://www.ftero.ch/

• ftero (Fall 2016-2017): https://www.ftero.ch/

• VertiGo (Fall 2014-2015): https://www.vertigoproject.ch/
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PaperI
Gone with the Wind: Nonlinear Guidance
for Small Fixed-Wing Aircraft in Arbitrarily

Strong Windfields

Luca Furieri, Thomas Stastny, Lorenzo Marconi, Roland Siegwart, and
Igor Gilitschenski

Abstract
The recent years have witnessed increased development of small, au-
tonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock
widespread applicability of these platforms, they need to be capable of
operating under a variety of environmental conditions. Due to their small
size, low weight, and low speeds, they require the capability of coping
with wind speeds that are approaching or even faster than the nominal
airspeed. In this paper we present a principled nonlinear guidance strategy,
addressing this problem. More broadly, we propose a methodology for the
high-level control of non-holonomic unicycle-like vehicles in the presence of
strong flowfields (e.g. winds, underwater currents) which may outreach the
maximum vehicle speed. The proposed strategy guarantees convergence
to a safe and stable vehicle configuration with respect to the flowfield,
while preserving some tracking performance with respect to the target path.
Evaluations in simulations and a challenging real-world flight experiment
in very windy conditions confirm the feasibility of the proposed guidance
approach.

Published in:
American Control Conference, 2017

Addendum: arXiv:1609.07577, 2017



Paper I: Gone with the Wind . . .

1 Introduction

In recent years, the use of small fixed-wing Unmanned Aerial Vehicles (UAVs) has
steadily risen in a wide variety of applications due to increasing availability of open-
source and user-friendly autopilots, e.g. Pixhawk Autopilot [68], and low-complexity
operability, e.g. hand-launch. Fixed-wing UAVs have particular merit in long-range
and/or long-endurance remote sensing applications. Research in ETH Zürich’s
Autonomous Systems Lab (ASL) has focused on Low-Altitude, Long-Endurance
(LALE) solar-powered platforms capable of multi-day, payload-equipped flight [58],
already demonstrating the utility of such small platforms in real-life humanitarian
applications [57]. UAVs autonomously navigating large areas for long durations will
inherently be exposed to a variety of environmental conditions, namely, high winds
and gusts. With respect to larger and/or faster aircraft, wind speeds rarely reach
a significant ratio of the vehicle airmass-relative speed. Conversely, wind speeds
rising close to the vehicle maximum airspeed, and even surpassing it during gusts,
is a frequent scenario when dealing with a small-sized, low-speed aircraft.
Usually in aeronautics, windfields are handled as an unknown low-frequency

disturbance which may be dealt with either using robust control techniques, e.g.
loop-shaping in low-level loops, or simply including integral action within guidance-
level loops. In the case of LALE vehicles, maximizing flight time would further
require the efficient use of throttle, thus limiting airspeed bandwidth. In order to
be able to use such systems safely and efficiently in a wide range of missions and
different environments, it is necessary to take care of such situations directly at the
guidance level of control, explicitly taking into account online wind estimates.
A standard approach to mitigate the effect of wind on path following tasks is

to exploit the measurements of the inertial ground speed of the aircraft, which
inherently includes wind effects, see [65], [55]. Another approach is to take the
wind explicitly into account, either by available wind measurements [49] [74] or by
exploiting a disturbance observer, as in [44]. Another possibility is described in
[5], where adaptive backstepping is used to get an estimate for the direction of the
wind.

As to wind compensation techniques, a possible approach is vector fields [55] [3].
In [55], an approach based on vector fields is used to achieve asymptotic tracking
of circular and straight-line paths in the presence of non negligible persisting wind
disturbances: vector fields are proposed for specific curves (e.g. straight lines,
circles). This requires switching the commands when the target path is defined
as the union of different parts, which makes the algorithm less uniform and its
implementation trickier. Tuning of vector fields is also known to be difficult, as
highlighted in [3].

Another popular approach is based on nonlinear guidance. The strategy proposed
in [66], utilises a look-ahead vector for improved tracking of upcoming paths,
introducing a predictive effect. The law was extended in [10] to any 3D path in the
non-windy case. Great advantages of this law are that it is easy and intuitive to
tune, the magnitude of the guidance commands is always upper-bounded, and it
has flexibility in the set of feasible initial conditions.
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The main contribution of this paper is a simple, safe, and computationally efficient
guidance strategy for navigation in arbitrarily strong windfields. To our knowledge,
there is no existing guidance law directly considering the case of the wind speed
being higher than the airspeed. The provided design strategy relies on the solution
provided in [10] in absence of wind whose choice for the look-ahead vector will be
properly modified in order to cope with arbitrarily strong wind speed.
Notation. We shall use the bold notation to denote vectors in R3. For a vector

v ∈ R3, v̂ denotes the associated versor and ‖v‖ the euclidean norm. For two
vectors v1,v2 ∈ R3, their scalar and cross products are respectively indicated by
v1 · v2 ∈ R and v1 × v2 ∈ R3.

2 Problem Definition

As we wish to extend the results obtained in [10], it is useful to define the same
mathematical framework. To have a better insight, we will clearly define the control
problem for each different scenario, and define a state-space nonlinear formulation.
This will allow us to state a robust control problem, which will be useful for analysis
in future work.

2.1 The Frenet-Serret framework for autonomous guidance

The position of the vehicle is denoted by rM , which is a vector of R3 expressed
with respect to an inertial reference frame denoted by Fi and described by an
orthonormal right-hand basis (i, j,k). We assume that (i, j) are co-planar with the
flight plane, with k orthogonal to such a plane. The emphasis of the work is on
developing a controller able to cope with strong wind. The latter is a vector w ∈ R3

assumed to be constant and to lie on the flight plane, namely with zero component
along k. The vectors vG ∈ R3 and aM ∈ R3 in the plane (i, j) denote the ground
speed and acceleration of the vehicle, the dynamics of the latter is described by

ṙM = vG , v̇G = aM . (3.1)

Considering flight through a moving airmass, vG = vM + w, in which vM is
the vehicle airmass-relative speed (or airspeed). Note that, since w is constant,
v̇G = v̇M . The acceleration aM represents the control input.

From a geometric viewpoint, the vehicle path is defined as the union of each rM (t)
for every time t. At each t ≥ 0 the vehicle path can be geometrically characterised in
terms of the unit tangent vector, the actual orientation, the tangential acceleration,
the normal acceleration, the tangential acceleration, the unit normal vector and
the curvature of the vehicle path respectively defined as
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T̂G(t) :=
vG(t)

‖vG(t)‖ , T̂M (t) :=
vM (t)

‖vM (t)‖ ,

aTM (t) := (aM (t) · T̂M (t))T̂M (t) ,

aNM (t) := (T̂M (t)× aM (t))× T̂M (t) ,

N̂M (t) :=
aNM (t)

‖aNM (t)‖ , kM (t) :=
‖aM (t)‖
‖vG(t)‖2 .

(3.2)

We observe that the unit normal vector is defined only for values of the acceleration
such that ‖aNM (t)‖ 6= 0. Furthermore, all the previous vectors lie in the plane (i, j).

Having in mind the application to fixed-wing UAVs, we will consider the vehicle
to be unicycle-like, i.e. its speed norm ‖vM‖ will remain unchanged in time and it
will be then guided through normal acceleration commands aNM . In other words,
the control law for aM will be chosen in such a way that aTM (t) ≡ 0. According to
this, and by bearing in mind (3.2), (3.1) can be rewritten as

ṙM (t) = v?M T̂M (t) + w(t), v?M
˙̂TM (t) = aMN (t) (3.3)

in which v?M denotes the (constant) value of ‖vM‖.
Inspired by [10], the desired (planar) path is a continuously differentiable space

curve in the plane spanned by (i, j) represented by p(l), l ∈ R, with associated a
Frenet-Serret frame composed of three orthonormal vectors (T̂p(l), N̂p(l), B̂p(l)), a
curvature κp(l) and a torsion τp(`). In the following we let s ∈ R the arc length
along the curve p(·) defined as

s(l) =

∫ l

l0

‖dp(`)

d`
‖d` .

The desired path is thus endowed with the Frenet-Serret dynamics given by T̂′p(s)

N̂′p(s)

B̂′p(s)

 =

 0 κp(s) 0
−κp(s) 0 τp(s)

0 −τp(s) 0

 T̂p(s)

N̂p(s)

B̂p(s)

 (3.4)

in which we used the notation (·)′ to denote the derivative with respect to s. As in
[10], we define the “footprint" of rM on p at time t as the closest point of rM (t) on
p(l) defined as

rP (s(t)) := arg min
r∈p
‖rM (t)− r‖ .

The point P on the desired path is identified by lP , which is the value of the curve
parameter l at the closest projection. The unit tangent vector, the unit normal
vector, the unit binormal vector, the curvature and the torsion of the desired path
at the point P will be indicated in the following as T̂P := T̂p(lP ), N̂P := N̂p(lP ),
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B̂P := B̂p(lP ), κP := κp(lP ) and τP := τp(lP ). They are all functions of time
through s(t). By bearing in mind (3.4), it turns out that the vehicle dynamics
induce a Frenet-Serret dynamics on the desired path which is given by

˙̂TP (t)
˙̂NP (t)
˙̂BP (t)

 = ṡ(t)

 0 κp(t) 0
−κp(t) 0 τp(t)

0 −τp(t) 0

 T̂P (t)

N̂P (t)

B̂P (t)

 (3.5)

in which ṡ(t) can be easily computed as (see Lemma 1 and Appendix B in [10]).

ṡ(t) =
(v?M T̂M (t) + w) · T̂P (t)

1 + κP (t)[(rP (t)− rM (t)) · N̂P (t)]
.

The (ideal) desired control objective is to asymptotically steer the position of the
vehicle rM (t) to the footprint rP (s(t)) by also aligning the unitary tangent vectors
T̂G(t) and T̂P (t) and their curvature. To this end it is worth introducing an error
e(t) defined as

e(t) := rP (t)− rM (t)

and to rewrite the relevant dynamics in error coordinates. In this respect, by
considering the system dynamics (3.1), the Frenet-Serret dynamics (3.5), it is
simple to obtain (for compactness we omit the arguments t)

ė = −
(
vG · T̂P

)( κP (e · N̂P )

1 + κP (e · N̂P )
T̂P + N̂P

)
˙̂TP =

κP (vG · T̂P )

1 + κP (e · N̂P )
N̂P

˙̂NP =
(vG · T̂P )

1 + κP (e · N̂P )

(
τP B̂P − κP T̂P

)
˙̂BP =

−τP (vG · T̂P )

1 + κP (e · N̂P )
N̂P

v?M
˙̂TM = aNM

(3.6)

with the ground speed vG that is a function of T̂M and w according to

vG = v?M T̂M + w .

This is a system with state (e, T̂P , N̂P , B̂P , T̂M ) with control input aM (to be
chosen so that aTM ≡ 0) subject to the wind disturbance w. Note that for planar
paths, τP = 0.

In the paper, similarly to [10], the acceleration command will be chosen as

aNM = (vM × u)× vM (3.7)
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with u ∈ R3 an auxiliary input to be chosen. Note that this choice guarantees that
aTM (t) ≡ 0 for all possible choices of u. The degree-of-freedom for the problem is
then the choice of the control input u to accomplish control goals.
Motivated by [87], the choice of u presented in the paper relies on the so-called

look-ahead vector, denoted by L̂, which represents the desired ground speed direction
for the vehicle. The latter will be taken as a function of the system state and of
the wind, according to the objective conditions in which the vehicle operates.

2.2 Feasibility Cone and Control Objective Formulation

Although the ideal control objective is to steer the error e(t) asymptotically to zero
by also aligning the unitary tangent vectors T̂G(t) and T̂P (t) and their curvature,
the presence of “strong” wind could make this ideal objective infeasible. For this
reason we set two objectives that will be targeted according to the wind conditions.
Ideal Tracking Objective. Ideally, the control input u must be chosen so that

the following asymptotic objective is fulfilled
lim

t−>∞
e(t) = 0

lim
t−>∞

(T̂G(t)− T̂P (t)) = 0

lim
t−>∞

(
dT̂G(t)

dt
− dT̂P (t)

dt
) = 0

(3.8)

namely position, ground speed orientation, and ground speed curvature of the
vehicle converge to the path ones.
Safety Objective. When strong wind does not allow to achieve the ideal

objective, the degraded safety objective consists of controlling the vehicle in such a
way that the vehicle acceleration is asymptotically set to zero, the ground speed
value is asymptotically minimized (by pointing the nose the vehicle against wind)
and the vehicle nose asymptotically points to P, namely

lim
t→∞

aNM (t) = 0

lim
t→∞

T̂M (t) = −ŵ

lim
t→∞

ê(t) = −ŵ .

(3.9)

The targeted configuration, in particular, is the one in which the vehicle goes away
with the wind, by minimizing the ground speed (safety objective), and minimizing
the distance to the closest point on the path. Note that this objective makes
sense for finite-length paths: the infinite-length linear path case is briefly discussed
in Section 8 (Appendix). Ideal or degraded objectives are set according to the
fulfillment of a “feasibility condition” by the look ahead vector. More precisely, with
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w? := ‖w‖ the wind strength, let β be defined as

β :=

 arcsin
v?M
w?

w? ≥ v?M
π w? < v?M .

(3.10)

Then, we define the “feasibility cone" C as the cone with apex centered at the
vehicle position rM , main axis given by w and with aperture angle 2β (see Fig. 3.6).
Notice that this becomes the entire plane when w? < v?M , i.e. β = π. All desired
ground speed vectors that lie in the cone can be indeed enforced by appropriately
choosing the control input u. This fact, and the fact that the look ahead vector
represents the desired ground speed direction for the vehicle, motivates the fact of
considering the ideal tracking objective feasible at a certain time t if it’s possible to
shape the look ahead vector L̂(t) so that it lies in C. More specifically, if

λ = arccos ŵ · L̂(t) < β . (3.11)

Otherwise, the ideal tracking objective is said infeasible at time t. The control
objectives are set consequently, and we shape the control input separately for each
subcase according to the following scheme:

u =


uslow w? ≤ v?M
ufast,1 w? > v?M , λ ≤ β
ufast,2 w? > v?M , λ > β

(3.12)

In Sections 3, 4, we show how to design the control input u as in (3.12) such that
if the ideal tracking objective is feasible then (3.8) is achieved, otherwise the Safety
Objective is enforced.

2.3 The Nominal Solution in Absence of Wind in [10]

In this section we briefly present the solution chosen in [10] for the look-ahead vector
in absence of wind, as it represents the basis for developing the windy solution. A
graphical sketch showing the notation is provided in Fig. 3.1.

The authors in [10] proposed the control law

u = kL̂ (3.13)

in which k is a design parameter chosen so that k > max
P∈p(l)

kP and L̂ is the look-ahead

vector chosen as
L̂ = cos (θL(‖d‖))d̂ + sin (θL(‖d‖))T̂P (3.14)

where d = e +dshiftN̂P = (‖e‖+dshift)N̂P is the radially shifted distance, θL(‖d‖)
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Figure 3.1: Sketch of the nominal solution of [10]

is the function

θL(‖d‖) =
π

2

√
1− sat(

‖d‖
δBL

) (3.15)

in which δBL is a boundary layer parameter and the parameter dshift is chosen
as dshift = [1 − ( 2

π
arccos

|kP |
k

)2]δBL. As shown in [10], this choice guarantees a
progressive and smooth steering of the vehicle along the path.
Instrumental for the next results, we also introduce the look-ahead vector com-

puted on the error e instead of the radially shifted distance d, that is

L̂0 := L̂|d=e . (3.16)

3 The Lower Wind Case

In this section, we consider the slower wind case, i.e. w? < v?M . Here we design
uslow as in (3.12).

3.1 Previous solutions and their weaknesses
A simple and commonly used approach to achieve path convergence with any
wind, similar to that shown in [66], is to apply the normal acceleration command
aMN = k(vG × L̂)×vG such that vG will eventually be aligned with the look-ahead
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3 The Lower Wind Case

vector L̂. Though it should be noted that this acceleration command, defined
perpendicular to the ground speed vector, is actually applied to the aircraft body-
axis; a notable discrepancy for smaller/slower systems. This approach also presents
non-easily predictable behaviours: as an example, it could happen what is shown
in Fig. 3.2.
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Corner Case: turn around

Figure 3.2: Initially, the ground speed is almost aligned with the look-ahead
vector, hence the aircraft is not commanded to change its attitude and gets carried
away by the wind. The aircraft is forced to perform a complete turn around to get
back on track.

3.2 Proposed strategy
Here the goal is to find the control input uslow that satisfies the requirements
in (3.8). We first find a basic control input, called ue, and improve on that to
obtain uslow. To this end, we are going to reason in steady state, i.e.

e = 0

T̂G = T̂P

dT̂G
dt

= dT̂P
dt

(3.17)

Initial control input

Here we are going to satisfy the first two requirements in (3.8). It is useful to
consider the geometry of the problem shown in Fig. 3.3 and introduce the following
angles, using basic trigonometric relations{

λe = arccos ŵ · L̂0

y = arccos−ŵ · L̂1e = π − λe − arcsin (
w? sin (λe)

v?
M

)
(3.18)
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Figure 3.3: L̂0 is the desired direction for vG. L̂1e is the target aircraft orientation.
ûslow is the applied control input. λe and y are defined in (3.18) and θs is defined
in (3.28)

where L̂1e is an unknown target orientation for the aircraft to be computed. It
should be noted that these angles are not defined in case w = 0.
We now aim to satisfy the first two requirements stated in (3.8) through the

choice of a basic control input
ue = kL̂1e (3.19)

To find such a command, we assumed to already be at the Position/Orientation
steady state condition. Since we assume to be on the path with the desired
orientation, then k(vM × L̂1e)× vM = 0, meaning that T̂M = L̂1e (T̂M = −L̂1e

would be an unstable equilibrium, as shown in [10]).
The natural choice for the desired ground speed direction is L̂0, as it was defined

in (3.16). Note that L̂0|e=0 = T̂P.
We need to find the desired direction L̂1e for the aircraft by solving the geometry

shown in Fig. 3.3, which means solving the following equation in L̂1e:

w + v?M L̂1e

‖w + v?M L̂1e‖
= L̂0 (3.20)

The solution, in terms of the angles defined in (3.18), is{
L̂1e = sign([ŵ × L̂0] · k)rot(−ŵ,−y) w? > 0

L̂1e = L̂0 w? = 0
(3.21)

where rot(a, θ) is the function that rotates vector a ∈ R3 by angle θ ∈ R around the
vertical axis k. The basic ue will be improved in Section 3.2 to obtain curvature
convergence.
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Improvement of the control input to satisfy the curvature convergence
requirement

In order to satisfy the curvature convergence requirement, we need to force the
correct amount of steady-state centripetal acceleration to the aircraft. This can
be done by firstly reasoning on what additional acceleration should be imposed
to the vG vector (which we call ‖aGN res‖), then by mapping to the actual aircraft
control input. The function ‖aGN res‖(·) should satisfy the steady-state curvature
requirement, i.e.:

‖aGN res‖ |e=0 = ‖kP ‖‖vG‖2 =

= k‖vG‖2‖(T̂P × L̂|d|=dshift )× T̂P ‖
(3.22)

In addition to that, when mapped to the actual control input, it should preserve
convergence. Inspired by [10] and (3.22), we claim that the following function is a
suitable choice:

‖aGN res‖ = k‖vG‖2‖(L̂0 × L̂)× L̂0‖ (3.23)

with L̂ and L̂0 as defined in Section 2.3. Indeed, (3.22) is satisfied by definition
(L̂0|e=0 = T̂P , d|e=0 = dshift), and convergence appears to be preserved. Map-
ping to the control input. We show that additional centripetal acceleration for
the aircraft can be achieved by rotation of the basic control input ue (3.19) through
a properly shaped angle function θs(·). Notice indeed that, for θ?s ∈ R:

[(vM × rot(ue, θ?s ))× vM ]|angle(vM ,ue)=0 = kv?M
2 sin(θ?s ) (3.24)

where we assumed the vehicle direction to coincide with ue. Since ‖aGN res‖ is
applied to the ground-speed vector vG, and remembering that for any normal
acceleration it holds aN = ~Ω×V, where ~Ω is the angular speed vector and V is
the linear speed vector, then it holds through derivation w.r.t. time of λe defined
in (3.18) (which indicates the vG orientation):

λ̇e =
‖aGN res‖
‖vG‖

sign(κP ) (3.25)

Still assuming that angle(vM ,ue) = 0, noticing that angle y defined in (3.18)
indicates the aircraft body-axis to which we apply the control input, and considering
equation (3.24), it holds:

ẏ =
d

dt

(
angle(vM ,w)|angle(vM ,ue)=0

)
= kv?M sin(θs) (3.26)
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Also, deriving the second equation of (3.18) w.r.t time, it holds:

ẏ = −λ̇e −
w? cos (λe)λ̇e

v?M

√
1− (

w? sin(λe)
v?
M

)2
(3.27)

Hence plugging (3.23) into (3.25) and (3.25) into (3.27), we can compare equations
(3.26) and (3.27) to obtain:

θs

sign(κP )
= arcsin

sat
−‖vG‖‖(L̂0 × L̂)× L̂0‖

v?M

1 +
w? cosλe√

v?M
2 − (w? sinλe)

2





(3.28)
Where the saturation function bounds the argument between -1 and 1: this is
needed because of the assumption angle(vM ,ue) = 0, i.e. during the transient
we might ask for residual accelerations that are higher than in steady-state. This
doesn’t ruin convergence, as the vehicle will keep turning until the ‖vG‖ eventually
decreases and θs can smoothly steer the trajectory curvature to the path curvature.
In the end we apply:

uslow = rot(ue, θs) (3.29)

ue defined as in (3.19), θs as in (3.28), so that the goals in (3.8) are satisfied.
We report in Fig. 3.4 a phase portrait showing global convergence in numerical
simulations for a large variety of initial conditions and different wind speeds. That
said, attractiveness to the equilibrium is not formally proved in this paper.

In Fig. 3.5, we can observe the performance of the algorithm for strong constant
wind, still slower than the airspeed.
Choice of k. In order for the algorithm to keep null error in steady state, we

have the lower bound:

k > max
|kP |

(
1 +

w?

v?M

)2

|kP | (3.30)

Similarly to [10], the derivation considers the highest acceleration we need in the
worst case scenario (L̂0 = ŵ, vM ‖ w).

4 The Higher Wind Case

In this section we design ufast,1 and ufast,2 introduced in (3.12). Let us define
the desired direction for the ground speed L̂0 as in equation (3.16), and the
corresponding basic control input ue as in equation (3.19). It is convenient to
reason considering the angles introduced in (3.18): refer to Fig. 3.6 for a better
visualization.
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Figure 3.4: Phase portraits of the proposed lower wind solution for w?=0 m s−1

(left), 7 m s−1 (middle), and 13.5 m s−1 (right), respectively. The tracking an-
glular error η = atan2

(
T̂Py , T̂Px

)
− atan2

(
T̂Gy , T̂Gx

)
∈ [−π, π] is compared

with the signed, one-dimensional cross-track error e∗ = e · rM
‖rM‖

to show algorithm
convergence within the bounds of δBL = 50 m, for k = 0.05, R = 100 m, and
v?M=14 m s−1.
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Figure 3.5: Airspeed 14 m/s. wind speed 12 m/s. The proposed solution lets the
vehicle achieve the goals in (3.8).
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y

Figure 3.6: w? > v?M case. ν is the angle between −w and the desired ground
speed L̂0, y as in Figure 3, vG is the actual ground speed that we achieve, ufast,2
is the chosen control input.

4.1 Solution for L̂0 feasible, i.e. λ ≤ β

As the desired ground speed direction L̂0 is feasible, we reason as in Section 3.2:
choose the basic control input ue as in (3.19) and rotate it by a proper angle
in order to achieve curvature convergence: this would mean ufast,1 = uslow, and
doing so we would achieve curvature convergence as long as the L̂0 is still feasible.
However, with usual shapes for the target curved path, at some point the desired
direction will become infeasible: when this happens, we need the control input not
to change abruptly, i.e. to be a continuous function of the desired L̂0. Since we
cannot in general achieve the goals in (3.8), we make a slightly different heuristic
choice for ufast,1 that guarantees continuity of the commands (as better explained
in [18]), while preserving curvature convergence to a good extent as long as the L̂0

is feasible:

θs2 =

√[
1− (

w? sin (λe)
v?
M

)2
]

cos (λe)
θs (3.31)

Notice indeed that at the infeasibility boundary θs2|λe=arcsin v?
M
w?−1 = 0 and at

the slower wind case boundary θs2|w?=v?
M

= θs, θs as in (3.28). So, in the end,

ufast,1 = rot(ue, θs2) (3.32)

4.2 Strategy for L̂0 infeasible, i.e. λ > β

We define an infeasibility parameter αout and a safety function σsafe(αout) as
follows:

αout =
λ− β
π − β σsafe =

π
2
− β − y(αout)

π
2
− β (3.33)
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where both indices have maximum value equal to 1. When σsafe = 1, it means that
we act conservatively and choose ufast,2

k
= −ŵ: this has to happen only in the

absolutely worst scenario of L̂0 = −ŵ, which corresponds to the maximum αout = 1.
In all the intermediate cases, we want to guarantee a tradeoff between conservatism
and tracking performance, i.e we want σsafe(αout) to be increasing with αout. This
can be achieved by finding a proper mapping f from angle ν = π− λe to angle y in
the following form

f : ν ∈ [0, π − β]→ y ∈
[
0,
π

2
− β

]
(3.34)

This mapping should satisfy, at least, these 3 properties:

f(0) = 0

f(π − β) =
π

2
− β

f(a) < f(b) ∀a > b, a, b ∈
[
0,
π

2
− β

] (3.35)

The first requirement is to guarantee that σsafe = 1 when L̂0 = −w. The second
one is a boundary condition to guarantee that the input is continuous to the L̂0

switching from being feasible to infeasible (or vice versa). The third requirement is
for finding a tradeoff between safety and performance: put in words, the more the
L̂0 is infeasible for the ground speed, the more we want to turn against the wind
and wait for it to stop.
By looking at Fig. 3.6, a natural choice that follows geometric intuition and is

coherent with the requirements that we have just stated, is

ufast,2 = k

√
w?2 − v?M 2L̂0 −w

‖
√
w?2 − v?M 2L̂0 −w‖

(3.36)

In terms of the mapping that has been defined before, this choice corresponds to

f(ν = π − λ) = y = arcsin
sin ν cosβ√

1 + cos2 β + 2 cosβ cos ν
(3.37)

this mapping satisfies the requirements (3.35), as can be easily verified by substitu-
tion and derivation with respect to ν. For clarity, the function is plotted in Fig. 3.7
for different values of the wind-cone opening angle β. In Fig. 3.8 the performance
of the algorithm is shown.
It is also worth highlighting the tradeoff introduced between performance and
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Figure 3.7: Proposed mapping y = f(ν) for different values of β
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Figure 3.8: wind speed is 16 m/s, airspeed is 14 m/s. The proposed control
input is used. Magenta line: feasible desired direction. Red line: infeasible desired
direction.

safety (incremental safety) by computing the safety function σsafe(αout) :

σsafe =

β − π
2

+ arcsin

(
sin (π − β − (π − β)αout) cosβ√

1 + cosβ2 + 2 cosβ cos (π − β − (π − β)αout)

)
β − π

2
(3.38)

as is also shown in Fig. 3.9.
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Figure 3.9: Infeasibility/safety relationship, for different βs

5 Continuity

In realistic scenarios, the wind is not going to be constant, but will likely switch
between w? < v?M and w? > v?M several times. Not only that, the path is going to be
curved, so the desired direction for the ground speed L̂0 is going to switch between
being feasible and infeasible. All these switchings mean that it is very important for
the command input u to be continuous to changing winds and changing L̂0. The
control input was derived separately for the three subcases (slower winds, higher
winds with feasible desired direction, higher winds with infeasible desired direction)
in Sections 3, 4.1, 4.2.

We want to show here that the complete control input

u =


uslow, w? ≤ v?M
ufast,1, w? > v?M , λ ≤ β
ufast,2, w? > v?M , λ > β

(3.39)

indeed guarantees continuity in this sense.
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• Switching between uslow and ufast,1: this happens as the wind passes
from w? < v?M to w? > v?M . Let t∗ be the boundary time instant in which
w?(t∗) = v?M (t∗). Also, in this case, λe(t∗) ≤ π

2
. Looking at the formulation

for θs and θs2 in (3.31), we have:

θs2|w?=v?
M

= θs|w?=v?
M

(3.40)

and so uslow(t∗) = ufast,1(t∗) so the command u(t) is continuous at this
boundary condition

• Switching between uslow and ufast,2: this happens as the wind passes
from w? < v?M to w? > v?M . Let t∗ be the boundary time instant in which
w?(t∗) = v?M (t∗). Also, in this case, λe(t∗) > π

2
. Solving the geometry in

Fig. 3.3, we have that ue = −w. Since β(t∗) = π
2
, this implies that y(t∗) = 0

as computed in (3.37): so ufast,2(t∗) = −w as well. Assuming T̂M ≈ L̂1e,
which is the case after some transient, we have that ‖vG‖ ≈ 0. So by (??),
we have θs ≈ 0, implying

uslow(t∗) ≈ −w ≈ ufast,2(t∗) (3.41)

• Switching between ufast,1 and ufast,2: this happens when w? > vM and
L̂0 passes from being feasible to being infeasible. Let t∗ be the boundary
time instant. Then

w?(t∗) sinλe(t
∗) = v?M (t∗) (3.42)

so θs2(t∗) = 0. This guarantees continuity, as no shifting angle is applied in
the infeasible case.

In Fig. 3.10 we report a plot that highlights the continuity of the input as the
wind increases and for a fixed L̂0. We plot angle y associated with the direction of
the control input ufast,2, for different values of ν = angle(−w, L̂0).

5.1 Sinusoidal Winds
As an example of a more realistic varying wind profile, in order to show that the
commands do not switch abruptly and are continuous, we consider the case of the
wind having this sinusoidal profile

w(t) = W sin (Ωt)
[
1 0 0

]T (3.43)

for some wind pulsation Ω and amplitudeW > v?M . The result is shown in Fig. 3.11,
and the same is shown (more clearly) in an accompanying video1.

Switching between any couple of the three parts of the control input can happen
in this case. The least smooth behaviour, as we have only approximate continuity,
is when the switching is between uslow and ufast,2.
1Sinusoidal wind simulation: <https://www.youtube.com/watch?v=fpV5KkmrrUc>
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Figure 3.10: Continuity at w? = v?M . Black line: slower wind. Magenta: inside
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Figure 3.11: Sinusoidal winds. Blue: uslow is applied. Magenta: ufast,1 is applied.
Red: ufast,2 is applied
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6 Flight Results

The proposed algorithm was implemented on a Pixhawk Autopilot in C++ and
subsequently tested on a small fixed-wing UAV in high wind conditions. In Fig. 3.12,
we show the results from the flight tests. The aircraft was commanded to follow a
circular trajectory in counter-clockwise direction at a nominal airspeed of 8 m s−1.
The wind vector is represented in the figures using the following arrow, color scheme:
w? < v?M (black), w? > v?M ∩ (L̂0 feasible) (magenta), w? > v?M ∩ (L̂0 infeasible)
(red). In Fig. 3.12a, the UAV can be seen to attempt curvature following despite
the infeasible look-ahead direction until a point where the wind speed reduces and
allows the start to convergence back to the path. Fig. 3.12b shows a wind-stabilized
approach towards the trajectory until the point where simply pointing into the
wind is the only option to reduce “runaway" from the track, recall the tracking
direction is counter-clockwise.
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Figure 3.12: Windy flight experiments. Red arrow: w? > v?M

7 Conclusions

In this work, we extended a nonlinear guidance method based on a look-ahead vector,
particularly suitable for fixed-wing UAVs, so as to actively take into account the
measurements of external flowfields and drastically improve the tracking performance
of the vehicle. Taking inspiration from issues that often arise when using small-sized
UAVS, such as the maximum achievable airspeed being lower than the wind speed
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and the commands to the aircraft being discontinuous when treating the higher-wind
case as a corner faulty case, the proposed technique considers arbitrarily strong
flowfields and is continuous to wind changes.

The slower wind case allows for exact convergence to the path, as all the directions
for the ground speed are feasible. The higher-wind case was considered in two
separate subcases, by defining the notion of feasible and infeasible desired ground
speed directions for the aircraft. Exact tracking performance in the feasible case
was shown preserved, while safety in the infeasible case was demonstrated and
bounded to a minimum “run away” configuration; i.e. we define the concept of
asymptotic safety for finite paths.

Future work will need to extend the proposed geometric approach to the more
general case of 3D paths with 3D winds. A mathematical proof for the convergence
with slower winds will also have to be provided.

8 Appendix: Stability Proof for High Wind Case

We are in the scenario of w? > v?M . For finite-length paths, we want to show that
we achieve the requirements in (3.9).

Here we will also consider briefly the case of infinite paths: the only realistic case
in UAV application is that of infinite linear paths. In this case we want to show
that:  lim

t→∞
aMN (t) = 0

T̂M
t→∞

= −rot(−ŵ, f(π
2
− µ))

(3.44)

where µ = arccos ŵ · Λ̂, Λ̂ is the direction of the target linear path, mapping
f : ν → y has to be chosen. The second requirement in (3.44) asks for a trade-off
between the linear-path direction and the anti-wind direction for the T̂M , that
results in an efficient direction for the actual T̂G.

In both cases, the proof for the proposed algorithm will be structured as follows:

• First the so called geometric case will be tackled: the vehicle is considered to
always be at the desired heading angle, i.e. T̂M (t) =

ufast,2
k

(t), ∀t.

• Then, the so called dynamical case (the vehicle is not always at the desired
heading angle) will be considered and shown to fall into the geometrical case
as time goes to infinity.

8.1 Geometric case: finite paths
Subcase 0. Single point path

Here we consider the path to be very far away and hence similar to a single point
P for the aircraft to be reached. The radially shifted distance is indistinguishable
from the error, so θs(t) ≈ 0 ∀t. Also, notice that with a point-path, ê = L̂0. By

43



Paper I: Gone with the Wind . . .

defining

a =
√
w?2 − v?M 2, l = ‖aL̂0 −w‖ (3.45)

we obtain
vG × L̂0 = (w? + v?M L̂1e)× L̂0 =

= (w +
v?M (L̂0a−w)

l
)× L̂0 =

= ((1− v?M
l

)︸ ︷︷ ︸
>0

w +
av?M
l

L̂0)× L̂0

= (1− v?M
l

)︸ ︷︷ ︸
>0

w × L̂0 + 0

(3.46)

Now let the line directed as L̂0 divide the plane into two half-planes: the
previous considerations imply that vG and w both lie in the same half-plane,
so the L̂0 will rotate more towards the −w direction in time until eventually
lim
t→∞

L̂0 = lim
t→∞

ê = −ŵ.
Another way to see this: the path-point P acts as a rotational joint for the

error vector e, which is fixed at one end in P : the vG is rotating the error vector
in the same direction as the wind would rotate it, meaning that it will point
instantaneously more in the anti-wind direction, i.e. even more outwardly with
respect to the cone, until it reaches the antiwind direction (the “torque” around
point P is null at that point).

As in this case L̂0 = ê, the L̂0 rotation must stop here. Since f(0) = 0, then also
lim
t→∞

ufast,2
k

= −ŵ by construction. By hypothesis of geometrical case, this means

lim
t→∞

T̂M (t) = −ŵ. Then, by definition of the normal acceleration command, also

lim
t→∞

aMN = 0 so we reach asymptotic safety as defined in (3.9).
As an additional feature, note that

sign[(vG ×w) · k](t0) =
sign[(vG ×w) · k](t), ∀t > t0

(3.47)

so we reach the equilibrium without oscillations around that line such that ê = −ŵ.

Subcase 1. Finite length paths

In this case, the L̂0 versor is a function of the particular path we are considering,
so we can no longer assume it to coincide with ê as in the single point path case.
However, consider the following two facts:

• The path is finite
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• ∀t ∈ R, rM (t) · ŵ ≥ rM (0) · ŵ + (w? − v?M )︸ ︷︷ ︸
>0

t

That is, as the wind is constantly stronger than the airspeed, the minimum
growth of the projection of the error onto the wind direction has rate (w? − v?M )t.
This implies that

lim
t→+∞

‖rM (t)‖ = +∞ (3.48)

and since the path is finite

lim
t→+∞

‖d(t)‖ = lim
t→+∞

‖e(t)‖ = +∞ (3.49)

As the distance grows to infinity, the path will look like a single point P∞, that
is the center of the smallest circle that contains the whole path. Then, we fall into
the single point-path subcase.

8.2 Geometric case: infinite linear paths
Here the path is not finite. However, a common case in UAV applications is when
the path is an infinite line. If this line is outside the wind-cone or the intersection
with the cone is finite, it is not possible for the vG to align to it. In this case, the
proposed algorithm achieves efficient wind stability, i.e. the objectives in (3.44).
To show this, simply notice that if d > δBL, then whatever the vehicle position,
we have L̂0 ⊥ Λ̂, as the error direction will always be perpendicular to the line. A
simulation for this situation is shown in Fig. 3.13.

0 100 200 300 400 500 600
x (meters)

200

250

300

350

400

450

500

y 
(m

et
er

s)

Efficient Wind Stability
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). Line direction is hence infeasible.
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The interpretation for this result is that the proposed algorithm finds some
efficient compromise for the vG direction between the anti-wind direction and the
path direction, which is a tradeoff between safety and tracking performance.

8.3 Dynamical case
Here we will extend the proof for the geometric case, so as to consider the dynamics
imposed by the nonlinear acceleration command. As the subcase of finite-length
paths was shown to fall into the subcase of single-point paths, studying the dynamic
extension for the single-point paths is all we need. The extension for the infinite
linear path is trivial and will be omitted, as the L̂0 stops changing as soon as
d > δBL.
In the following, it is clearer to directly refer to Fig. 3.14 for the symbols definition.

y z

path

E

E

Figure 3.14: Symbols used in the proof

Depending on the desired ground speed direction at L̂0, we have two subcases.

46



8 Appendix: Stability Proof for High Wind Case

Subcase 1

If
β < ν < π − β (3.50)

corresponding to L̂0 pointing outside of the “specular” cone, then it is easy to see
that

αLg < π, ∀θg (3.51)

meaning that
ν̇ < 0 (3.52)

independently from the actual aircraft orientation. This holds until we fall into
subcase 2.

Subcase 2

If
0 < ν < β (3.53)

corresponding to L̂0 pointing inside of the “specular” cone, we need further consid-
erations. It is not true anymore that αLg < π, ∀θg . Instead we have{

αLg < π, if θg > −ν
αLg ≥ π otherwise

(3.54)

Then it’s possible that, depending on how the aircraft is oriented, ν will increase
while the angle between T̂M and the commanded direction ufast,2

k
is smaller than π

, which is undesirable as it would mean the L̂0 is “running away” from T̂M . To show
that eventually the aircraft can be considered to be aligned with its commanded
control input versor ufast,2

k
, consider the following:

• We can increase parameter k in order to make the vehicle turn with faster
dynamics.

• As time goes to infinity, eventually the “chasing” angle z will decrease to 0.

To show this last fact, first notice that for any given T̂M , if ν̇ > 0 then ν̇ is a
decreasing function of |e ·w| that goes to 0 as 1

|e·w| or faster. Indeed, consider the

case when ν̇ > 0 and has the maximum value, i.e. ν = 0 and T̂M⊥w. We have

ν̇MAX =
v?M
|e ·w| (3.55)

which acts as an upperbound for all the other situations. Irrespectively from T̂M ,
since w? > v?M , |e ·w| indeed increases, hence ν̇ must decrease and tend to 0. Since
y is a function of ν such that ∀ ν, y(ν) < ν, than also ẏ decreases and tends to 0
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as time goes to infinity. Now consider the time derivative of the “chasing” angle z

ż = ẏ + ξ̇ (3.56)

Since we showed lim
t→+∞

ν̇(t) = 0 = lim
t→+∞

ẏ(ν(t)), irrespectively of what the orienta-

tion of the vehicle could be at any time, then, as ξ indicates the heading angle of
the aircraft,

lim
t→∞

ż(t) = ξ̇(t) (3.57)

As the acceleration command is designed to steer the vehicle orientation onto the
chosen look-ahead vector, which now is ufast,2

k
, as the look-ahead is bound to

asymptotically stop changing as the vehicle gets further away from the path, then
we actually have that lim

t→∞
ξ̇(t) = 0, with the vehicle aligned to the look-ahead

vector. This, together with (3.57), translates in

lim
t→∞

z(t) = 0 (3.58)

Then we can say that we asymptotically fall into the geometrical case, and the
proof holds.
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PaperII
On Flying Backwards: Preventing
Run-Away of Small, Low-Speed,

Fixed-Wing UAVs in Strong Winds

Thomas Stastny and Roland Siegwart

Abstract
Small, low-speed fixed-wing Unmanned Aerial Vehicles (UAVs) operating au-
tonomously, beyond-visual-line-of-sight (BVLOS) will inevitably encounter
winds rising to levels near or exceeding the vehicles’ nominal airspeed.
In this paper, we develop a nonlinear lateral-directional path following
guidance law with explicit consideration of online wind estimates. Energy
efficient airspeed reference compensation logic is developed for excess wind
scenarios (i.e. when the wind speed rises above the airspeed), enabling
either mitigation, prevention, or over-powering of excess wind induced
run-away from a given path. The developed guidance law is demonstrated
on a representative small, low-speed test UAV in two flight experiments con-
ducted in mountainous regions of Switzerland with strong, turbulent wind
conditions, gusts reaching up to 13 meters per second. We demonstrate
track-keeping errors of less than 1 meter consistently maintained during
a representative duration of gusting, excess winds and a mean ground
speed undershoot of 0.5 meters per second from the commanded minimum
forward ground speed demonstrated in over 5 minutes of the showcased
flight results.
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1 Introduction

In recent years, small, easily manageable, operated, and maintained fixed-wing
Unmanned Aerial Vehicles (UAVs) are increasingly being applied to remote sensing
ventures requiring long-range and/or long-endurance flight. For example, ETH
Zürich’s Autonomous Systems Lab (ASL) has developed Low-Altitude, Long-
Endurance (LALE) solar-powered platforms capable of multi-day, payload-equipped
flight [61], and further demonstrated the utility of such small platforms in beyond-
visual-line-of-sight (BVLOS) science missions such as Arctic glacier monitoring (see
project Sun2Ice1). The ability to reach far-away locations where humans either
cannot or do not want to go is a great advantage, however it also comes with risks
that operators, placated by seemingly fully automated aircraft, may not anticipate.
Endemic to small, low-speed fixed-wing platforms is a susceptibility to high

winds. UAVs operating autonomously BVLOS, e.g. in mountainous areas or along
coastlines, will doubtless encounter winds rising to levels near or exceeding the
vehicles’ nominal airspeed. Without a control law cognizant of the local wind field,
or moreover, without logic to handle such cases, the aircraft risks mission delays
(unable to make meaningful progress towards subsequent waypoints) or possibly
loss of airframe (if operating near and blown into large structures, e.g. cliff walls or
fjords).

As researchers and practitioners execute more flight hours and experience more
weather conditions, wind hazards have started to be acknowledged within literature.
Recent work has considered wind in various iterations of emergency landing planners
using airmass relative Dubins aircraft curves (or trochoids in the inertial frame) [40,
85], however, these planners still require that the aircraft is able to move forward
with respect to the ground and rely on some form of guidance law to follow the
planned paths. Authors of [12] propose a vectorfield -based guidance law which
considers the current wind estimate and may follow any smooth path curvature,
however the algorithm uses level sets to describe the notion of distance from the
trajectory which makes tuning specific to the curve for which the “distance" function
is defined, as opposed to the more common direct relation to track error. A three-
dimensional guidance approach with explicit consideration of wind is developed
in [4], where the law further accounts for roll and flight path angle constraints using
the theory of nested saturations.

More generic guidance logic for either waypoint tracking or path following typically
takes inertial ground speed measurements as inputs, which contains the effect of
wind. Perhaps the most widely used path following guidance running on small
fixed-wing UAVs today, the nonlinear path following guidance developed in [75]
(commonly known as L1 guidance), uses exactly this approach. This “look-ahead"
method is simple (implemented easily on a microcontroller), intuitive to tune
(following further extentions in [11]), and quite effective in practice; however, it
has the detriments that 1) convergence to the path is only guaranteed for lines
and circles, and 2) as shown in [19], the logic breaks down once winds approach

1http://www.sun2ice.ethz.ch
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1 Introduction

Figure 4.1: Easyglider test platform flying in strong winds over the Jura, Switzer-
land.

and/or exceed the vehicle’s airspeed. The law was abstracted in [10] to a more
general form capable of following any smooth, continuous 3D path, though without
consideration of wind.
In our previous work, we took the method from [10] in a different direction

and reformulated the 2D case for consideration of excess wind cases (i.e. wind
speed > airspeed) [19]. To date, [19] is still the only guidance method in literature
considering the particular problem of excess wind. While this logic will provide
run-away mitigation (i.e. minimizing the rate at which the vehicle is blown away
from the path), in the case the aircraft may have remaining energy available, the
airspeed reference could be increased above the nominal value to further reduce, or
even prevent run-away.
In this work, we propose utilizing the airspeed reference as control towards

the development of an efficient airspeed reference compensation logic, running in
parallel with an improved, wind-robust directional guidance. The resultant logic
either regulates wind excess, stays on track, or maintains a minimum ground speed,
depending on the operator’s chosen mode or the aircraft’s speed limits. We provide
significant enhancements to the baseline algorithm with a heavy emphasis on practi-
cal implications of fielding the controller including, but not limited to, an improved
notion of bearing feasibility, numerical stability considerations, reference command
continuity, and condition independent tuning strategies. Finally, we demonstrate
the effectiveness of the control strategy on a small fixed-wing test platform in thor-
ough flight experiments in mountainous terrain with strong, turbulent winds. The
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resulting guidance is, to the authors’ best knowledge, the first example in literature
of an algorithm considering both excess wind conditions on small fixed-wing UAVs
as well as providing the means to fully prevent vehicle run-away and maintain track
keeping.
The remainder of the paper is structured as follows: Section 2 presents the

objective formulation and the concept of bearing feasibility, Section 3 outlines our
previously developed directional guidance strategy [19] for both lower and excess
wind conditions, detailing specific enhancements and modifications in the present
work, Section 4 develops a new airspeed reference compensation logic, and Section 5
concludes with experimental results.

2 Bearing Feasibility

We consider a fixed-wing aircraft flying horizontally in two dimensions with ground
velocity vG = vA + w the sum of airspeed vA and wind w vectors. In the case
that the wind speed exceeds the UAV’s airspeed, feasibility of flying a given bearing
χref depends on the wind direction. A binary definition of the bearing feasibility
can be formulated as:

β sin |λ| ≥ 1 ∪
(
|λ| ≥ π

2
∩ β > 1

)
(infeasible)

else (feasible) (4.1)

where the wind ratio β = w/vA is the fraction of wind speed w = ‖w‖ over
airspeed vA = ‖vA‖ and λ is the angle between the wind w and (unit) bearing
l̂ = [cosχref, sinχref]

T vectors:

λ = atan2
(
w × l̂,w · l̂

)
∈ [−π, π] (4.2)

The relationship in (4.1) physically describes a “feasibility cone", fully open when
β < 1 and asymptotically decreasing to zero angular opening as β →∞, see Fig. 4.2.
When the bearing l̂ lies within this cone the bearing is feasible and contrarily, when
outside, infeasible.
Two separate tracking objectives can then be intuited: 1) an ideal tracking

objective, where we are able to track the prescribed bearing and 2) a safety
objective, where we instead tend towards reducing run-away by turning against the
wind and simultaneously leveling the aircraft as t→∞, where t is time. When the
vehicle remains on or near the feasibility boundary (common when the wind speed is
approaching the airspeed and small gusts or turbulence are present), it is desirable
to transition continuously between these two states to avoid oscillating discretely
between reference commands (see Section 3 for reference command generation).
In [19], the following continuous feasibility function was proposed:

feas (λ, β) =

√
1−

(
β sin λ̄

)2
cos λ̄

(4.3)
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Figure 4.2: Feasibility “cone" (wind speed greater than airspeed). Note in the
excess wind condition, two heading solutions exist for a given course.

where feas (λ, β) ∈ [0, 1] transitions from a value of 1 at “fully” feasible conditions
(β < 1) to 0 in infeasible conditions (definition in (4.1)), see Fig. 4.3 (left). Input
λ̄ = sat

(
|λ|, 0, π

2

)
, where operator sat (·,min,max) saturates the input at the

bounds min and max.
However, some practical issues exist with the function as defined in (4.3); namely:

• The function is continuous, but not smooth at the feasibility boundary, which
can lead to fast changing and undesirably jagged reference commands.

• Numerical stability issues exist as λ̄→ π
2
∩ β → 1 due to the simultaneously

decreasing magnitudes of the numerator and denominator (calculations with
floating point precision on small microcontrollers then become an issue).

• A purely binary jump from feasible to infeasible conditions exists at |λ| ≥
π
2
∩ β = 1, which leads to jumping reference commands at a critical and

common position in the state space: i.e. when the wind speed is very close
the airspeed, the aircraft is facing against the wind λ = π, and small gusts
perturb the system above and below the feasibility barrier.

To address these issues, a small buffer zone below the β = 1 line is designed, con-
sidering some buffering wind ratio βbuf ∈ (0, 1). The buffer’s magnitude may be set
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Figure 4.3: Feasibility function: original formulation from [19] (left), new approx-
imation with extended buffer zone (right).

e.g. corresponding to the airspeed reference tracking dynamics. An approximation
of the feasibility function in (4.3) can be made incorporating the buffer zone, as
well as maintaining both continuity and smoothness in the transition (see Fig. 4.3
(right)):

feas (λ, β) =


0 β > β+

cos2
(
π
2

sat
(
β−β−
β+−β−

, 0, 1
))

β > β−

1 else

(4.4)

where the upper limit of the transitioning region β+ is approximated as a piecewise-
continuous function with a linear finite cut-off to avoid singularities, the cut-off
angle λco chosen small such that the regular operational envelope is not affected:

β+ =

{
β+co +mco

(
λco − λ̄

)
λ̄ < λco

1/ sin λ̄ else
(4.5)

with β+co = 1/ sinλco and mco = cosλco/ sinλ2
co. The lower limit of the tran-

sitioning region β− is similarly made piecewise-continuous to correspond with
β+:

β− =

{
β−co +mco

(
λco − λ̄

)
βbuf λ̄ < λco(

1/ sin λ̄− 2
)
βbuf + 1 else

(4.6)

where β−co = (1/ sinλco − 2)βbuf + 1.

54



3 Directional Guidance

3 Directional Guidance

For purely directional guidance, traditional look-ahead approaches ([10, 75]) con-
sider a constant speed unicycle model directionally driven via normal acceleration
command

aNG,ref = kvG
2 sin η (4.7)

typically defined about the ground speed vector, where k is a proportional gain
and η = χref − χ ∈ [−π, π] is the angular error in course χ from the bearing χref,
corresponding to look-ahead vector l̂. While a powerful control law, very high wind
ratios degrade the performance and the ground speed based formulation does not
handle excess wind conditions (i.e. β ≥ 1) [19].

Noting any normal acceleration command in reality is applied about the aircraft’s
velocity-axis, the reference acceleration may be reformulated about the airspeed
vector

aNA,ref = kvA
2 sin ηA (4.8)

where ηA = ξref − ξ ∈ [−π, π] is the angular error in heading ξ from the heading
reference ξref, corresponding to air-mass relative look-ahead vector l̂A.

In the following sections, the construction of the air-mass relative look-ahead vec-
tor l̂A is built up step-by-step: first considering a baseline, purely track-error based,
nonlinear path following law, followed by feed-forward rotations both converting
the ground relative bearing χref to an air-mass relative heading reference ξref and
considering the path curvature, and finally partitioning the control law into feasible
and infeasible bearing cases while maintaining reference command continuity. The
approach follows closely to that in [19], with extensions/enhancements over the
original formulation highlighted at each stage. All vectors and rotations from the
following development are displayed in Fig. 4.4.

3.1 Baseline path following

We consider a mathematical definition of the ideal tracking objective described in
Sec. 2, i.e. the desired convergence behavior of the guidance law, assuming the
bearing is feasible.

ideal obj.


lim
t→∞

e(t) = 0

lim
t→∞

(
t̂P (t)− v̂G(t)

)
= 0

lim
t→∞

(
d

dt
t̂P (t)− d

dt
v̂G(t)

)
= 0

(4.9)

where track-error e = p− r, r is the vehicle position, t̂P is the path’s unit tangent
vector at the closest point p, and v̂G = vG/‖vG‖, ‖vG‖ 6= 0 is the unit ground
speed vector. In words, the vehicle should converge to the path while heading in
the correct direction.
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Figure 4.4: Directional guidance – geometry for feasible bearing.

Similar to [10], we define a purely track-error based look-ahead vector l̂:

l̂ = cos θlê + sin θlt̂P (4.10)

where ê = e/‖e‖, ‖e‖ 6= 0 is the unit track-error and look-ahead angle θl = f (e) ∈[
0, π

2

]
maps track-offset to a reference angle of approach to the path.

Shaping of the bearing transition through θl is achieved by combining the nominal
mapping function found in [10] with a quadratic lead-in curve, smoothly bringing
in the desired change in χref as the vehicle approaches the path:

θl =
π

2
(1− ē)2 (4.11)

where ē = sat
(
‖e‖
eb
, 0, 1

)
is the normalized track-error within the track-error

boundary eb.
Similar to the guidance augmentation in [79], we extend the formulations in

[10, 19] with an adaptive track error boundary eb, taking into account the current
ground speed vG = ‖vG‖:

eb =

{
Tb

2vG,co
vG

2 + Tb
2
vG,co vG < vG,co

TbvG else
(4.12)

where Tb is a tunable look-ahead time constant, useful for modulating the time at
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which the aircraft begins turning into the path with respect to the approaching
ground speed. A ground speed cut-off vG,co is incorporated within a piecewise
quadratic function to smoothly saturate eb as vG → 0, avoiding singularities. It is
from a distance of eb the look-ahead vector will begin to transition from normal to
tangent bearings, with respect to the path.

At this point, we need to augment l̂ for both wind and path curvature. Look-ahead
l̂A requires separate control laws for feasible and infeasible bearings, corresponding
to the ideal and safety objectives, respectively.

3.2 Feasible Bearing

The look-ahead vector l̂ describes a bearing necessary to drive convergence to a path
with no curvature. In the case that the bearing is feasible, wind vector information
may be utilized to translate appropriate heading references ξref necessary to achieve
the ground relative motion defined by the bearing. Towards this end, we rotate the
ground-based look-ahead vector l̂ by angle x:

x = sin−1 (β sinλ) (4.13)

the resulting (curvature independent, i.e. κP = 0) heading vector reference then

l̂
κP=0
A = H (x) l̂

where H (·) =

(
cos {·} − sin {·}
sin {·} cos {·}

)
(4.14)

To further account for path curvature, we consider the “on-track” wind triangle,
i.e. angles λ0, x0, and y0 and ground velocity vG0 = vG0 t̂P at point p, where

λ0 = atan2
(
w × t̂P ,w · t̂P

)
(4.15)

x0 = sin−1 (β sinλ0) (4.16)
y0 = π − |x0| − |λ0| (4.17)

vG0
=
√
vA2 + w2 − 2vAw cos y0 (4.18)

In this condition, imagining the vehicle is already tracking the path with ‖e‖ = 0

and vA aligned with l̂
κP=0
A (if calculated as in (4.14) from the respective x0), an

additional normal acceleration

aNG0
= vG0

2κP (4.19)

is required to follow the path’s curvature. With a quasi-steady assumption on wind
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and differentiating (4.17),

ẏ0 = −λ̇0 −
β cosλ0λ̇0√

1 + (β sinλ0)2
(4.20)

Noting the relationship between normal acceleration, linear speed, and angular
speed aN = vω, and following the guidance law in (4.8) it also holds:

λ̇0 =
aNG0

vG0

(4.21)

ẏ0 = kvA sin ηc0 (4.22)

where ηc0 is the necessary additional rotation through which l̂
κP=0
A must be

transformed to obtain l̂A. Hence, plugging (4.19) into (4.21), (4.21) into (4.20),
then equating (4.22) and (4.20), we may obtain on-track curvature rotation:

ηc0 =

sin−1

(
feas (λ0, β)

vG0
κP

vAk

(
1 + β cosλ0√

1−(β sinλ0)2

))
(4.23)

We highlight three enhancements present in the curvature rotation defined in
(4.23), compared to that in [19]:

• Considering only the on-track wind triangle avoids the necessity to saturate
input to the arcsine function, previously required due to the mismatch between
on-track angles and the aircraft centric wind triangle.

• We embed the on-track bearing feasibility feas (λ0, β) in order to zero-out the
arcsine input argument as we approach the feasibility barrier, and thus that
of an infeasible state where considering curvature no longer makes sense.

• To avoid observed occasionally unintuitive flight trajectories caused by con-
sidering the path curvature when far from the track, an additional smooth
limiter σl = sin2 θl is included to bring in curvature adjustments only as we
converge to the path:

ηc = feas (λ, β)σlηc0 (4.24)

where feas (λ, β) again zeros-out the consideration of path curvature as we approach
the feasibility barrier; in this case in the aircraft centric frame to maintain reference
continuity.
With the final rotation necessary for tracking curvature, the airspeed relative
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look-ahead vector for the feasible case may then be summarized as:

l̂A,feas = H (ηc) l̂
κP=0
A (4.25)

=⇒ l̂A,feas = H (x+ ηc) l̂ (4.26)

noting here the rotation is one-dimensional, so the angles may be simply added.

3.3 Infeasible Bearing

Following [19], when the bearing becomes fully infeasible, the look-ahead reference
may be defined as (see also Fig. 4.5 for a visual geometric description):

l̂A,infeas =

√
w2 − vA2 l̂−w

‖
√
w2 − vA2 l̂−w‖

(4.27)

This strategy considers the trade-off between tracking performance (ideal objective)
and safety performance (safety objective) while λ ∈

[
sin−1 β−1, π

]
∩ β ≥ 1, i.e.

favoring a “worst-case" safety configuration of facing against the wind as λ→ π,
and that of the ideal objective defined in (4.9) when λ resides at the feasibility
barrier.

Figure 4.5: Directional guidance – geometry for infeasible bearing.

59



Paper II: On Flying Backwards . . .

safety obj.


lim
t→∞

aNA,ref(t) = 0

lim
t→∞

v̂A(t) = −ŵ(t)

lim
t→∞

ê(t) = −ŵ(t)

(4.28)

The latter of the requirements in (4.28) correspond to the desire to minimize “run-
away” from the track. Convergence analysis of the safety objectives (4.28) defined
for look-ahead law (4.27) may be found in [19] which is similarly applicable to the
present formulation. Note, in this work, the infeasible look-ahead reference l̂A,infeas
always uses the “faster” heading solution of the two seen for the excess wind case in
Fig. 4.2.

3.4 Tuning

The k bounds for guaranteeing curvature convergence can be derived by considering
the steady-state conditions e = 0 in the “worst-case” scenario t̂P = ŵ (i.e. maximum
required normal acceleration to maintain curvature), where vG0

= vA + w and
λ0 = 0 are substituted within (4.19), (4.21), and (4.20):

ẏss = − (vA + w) |κP | (β + 1) (4.29)

Further considering the input argument of the arcsine function in (4.23), it may
noticed that k > ẏss/vA to ensure the equation is well defined, this resulting in the
following k bounds:

k > (1 + β)2 |κP | (4.30)

While the above initial analysis was also present in [19], we handle a previously
unconsidered practical implementation of this bound, that of potentially variable
wind ratios β and path curvature κP , in an adaptive way:

kadj = kmax + σl (k − kmax) (4.31)

kmax =

{
max

(
k, kmult (1 + β)2 |κP |

)
β ≥ 1

max (k, 4kmult|κP |) else
(4.32)

where kmax is the maximum of the operator defined proportional gain k and the
minimum required gain from (4.30) (with some tolerance, kmult), and kadj is the
resulting adjusted gain used by the controller. Note (1 + (β = 1))2 = 4, which is
held as a constant multiplier in the β < 1 case. This logic alleviates the need for
condition specific tuning and ensures convergence is maintained while still allowing
operator defined dynamics of the control response whenever the bounds are not
exceeded.
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3.5 Control allocation
The commanded lateral acceleration from the directional guidance (following the
control law in (4.8)) is translated into a roll angle reference via the common
coordinated turn assumption: φref = tan−1

(
aNA,ref/g

)
, where g is the acceleration

of gravity. It is then the task of the lower-level control loops to track this reference,
see Sec. 5 for control architecture details.

4 Airspeed Reference Compensation

In this section, we extend the high-level guidance logic by adding an additional
control, the airspeed reference, developing an energy efficient airspeed compensation
logic. With the assumption that extra commanded airspeed entails extra energy
usage, we wish to only increase the reference as much as necessary to prevent
run-away (stay on track) until winds have receded. I.e. when the feasibility barrier
has been crossed, an ideal equilibrium point of vG = ‖e‖ = 0 should be approached.
The following subsections develop successive stages of compensation logic; namely,
wind excess regulation, track keeping, and minimum ground speed maintenance.

4.1 Wind Excess Regulation
To achieve the first component of the desired equilibrium, vG = 0, we define a
positive speed increment ∆vwA corresponding to the difference between the wind
speed w and nominal reference airspeed vA,nom, i.e. the excess wind speed ∆w =
sat
(
w − vA,nom, 0,∆vA,max

)
, where ∆vA,max = max

(
vA,max − vA,nom, 0

)
is the

maximum allowed airspeed reference increment, derived from the maximum available
airspeed setting vA,max:

∆vwA = ∆w (1− feas (λ, β)) (4.33)

This wind excess -based speed increment may be added to the nominal reference
vA,nom towards regulating vG → 0, though small perturbations will induce small
steady-state tracking errors which may only grow over time, unless wind speeds
recede.

4.2 Track Keeping
To further stay on track in excess wind speeds, an additional speed increment ∆veA
corresponding to the normalized track-error ē may be defined:

∆veA = ∆veA,maxkēkw (1− feas (λ, β)) (4.34)

where ∆veA,max is the maximum allowed speed increment generated from track-error.
The gains kē and kw are used to tune track-error and wind speed excess derived
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saturation ramps:

kē = sat

(
ē

ēbuf
, 0, 1

)
(4.35)

kw = sat

(
∆w

∆wbuf
, 0, 1

)
(4.36)

kē is scaled by a chosen fraction of the normalized track-error ēbuf, setting the
proximity at which ∆veA,max is applied in full, while kw is scaled by ∆wbuf to
ensure no airspeed increment is applied in the condition that the feasibility function
lies within the extended buffer zone below β = 1. The track offset -based speed
increment ∆veA assists ∆vwA by increasing the airspeed enough to overpower the
current wind speed, returning the aircraft to the path, at which point the term
again zeros out. With both increments in play, the augmented airspeed reference
combines them as follows:

vA,ref = vA,nom + min
(
∆vwA + ∆veA,∆vA,max

)
(4.37)

4.3 Maintaining a Minimum Forward Ground Speed
Though the incremented airspeed reference in (4.37) will maintain zero track-error,
it may further be desirable that forward progress is made on a given path – e.g.
if the vehicle should attempt to return home, or at the least complete its current
set of mission waypoints. Towards this end, the bearing feasibility function can
be utilized for efficient tracking of an operator-set minimum forward ground speed
vG,min, with forward ground speed defined as the 2D (horizontal) projection onto
the airspeed vector vG,fwd = vG · vA

‖vA‖
. vG,min may then be used to augment the

wind ratio and, further, airspeed increments, effectively imitating a higher wind
speed which the logic must compensate:

βG =
w + vG,min

vA
(4.38)

∆w = sat
(
w − vA,nom + vG,min, 0,∆vA,max

)
(4.39)

∆vwA = ∆w (1− feas (λ, βG)) (4.40)

Note that with a minimum ground speed defined, the track keeping logic defined
in Sec. 4.2 should be disabled, i.e. ∆veA = 0. Fig. 4.6 illustrates the feed-forward
airspeed reference mapping resulting from the minimum ground speed logic.

5 Flight Experiments

In this section, we present flight demonstrations on a small (1.8 m wingspan, 1.3 kg),
low-speed test platform, Easyglider (see Fig. 4.1), from two mountainous regions in
Switzerland, showcasing the performance of the developed guidance laws in strong
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Figure 4.6: Airspeed reference compensation and resulting forward ground speed
with (right) and without (left) a minimum ground speed applied (note no track-offset
increment is added here). For illustrative purposes, the look-ahead logic defined in
Sec. 3 is assumed perfectly tracked (or in steady-state condition). vA,nom =10 m s−1

(dotted red line) and vA,max =12.5 m s−1 (dashed red line). The solid red line
indicates the feasibility boundary. Note airspeed is only incremented as necessary
to achieve the desired forward ground speed until reaching the upper saturation
bound of ∆vA,max.
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winds. The guidance algorithm has been programmed in C/C++ on a Pixhawk
autopilot (168 MHz Cortex-M4F microcontroller with 192 kB RAM) running PX42
firmware. PX4 implementations of a cascaded PID-based attitude/rate control
(with feed-forward turn compensation), airspeed and altitude control via Total
Energy Control System (TECS) [6], and an online Extended Kalman Filter (EKF)
are utilized for tracking guidance commands and feeding back state estimates,
respectively. We note that all underlying control and estimation structures are
operational with a standard low-cost sensor suite for small fixed-wing UAVs (see
exemplary sensor selection in [61]) and further require no model-based assumptions.
Guidance parameters held constant for both flights may be found in Table 4.1. All
displayed airspeeds are “true” airspeeds (TAS), i.e. relative to the airmass. To keep
wind, ground speed, and TAS inputs to the guidance algorithm compatible with
eachother, a “filtered” TAS estimate is obtained by subtracting the wind estimate
from the GNSS velocity. As the wind estimate is already filtered, this further
smooths out the typically noisy airspeed measurements (from a pitot-static tube
with differential and ambient pressure sensors) that would otherwise degrade the
guidance commands.

Table 4.1: Guidance parameters used in flight experiments.
Param Value Unit Param Value Unit
βbuf 0.1 - - vA,nom 8.8 m s−1

λco 1.0 ° vA,max 15.0 m s−1

vG,co 1.0 - - ēbuf 0.5 - -
Tb 7.0 s ∆wbuf 0.5 m s−1

k 0.11 - - ∆veA,max 3.0 m s−1

kmult 1.1 - -

5.1 Wind Excess Regulation and Minimum Ground Speed
Maintenance

Figures 4.7 and 4.8 show the position and state trajectories of a fully automatic
ca. 7 min flight experiment on a windy plateau in the Jura Mountain range in
Switzerland. Stages (I)-(V) in Fig. 4.8 step through various compensated and
uncompensated guidance modes, however no track keeping is enabled. A clear
reduction in run-away can be seen in Fig. 4.7 when comparing the uncompensated
case (III: t =101-142s) to that of wind excess regulation (V: t =283-414s). Further,
when commanded, minimum forward ground speed is maintained with a mean
undershoot of 0.51 m s−1 (with one standard deviation error 1.07 m s−1), increasing
the airspeed reference when the bearing would otherwise become infeasible, and
decreasing appropriately on the down wind legs, see (II), (IV), and (V); this,
however, with the exception of the stall denoted by (VI).
2http://dev.px4.io
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Figure 4.7: Flight experiment: Lamboing, Switzerland (892 AMSL - Plateau de
Diesse). Aircraft position colored with the current bearing feasibility. Mean wind
speed was 10.6 m s−1, gusting to 13.1 m s−1 during the flight period.

At t =135 s, while the Easyglider is running away at up to −5 m s−1 forward
ground speed (due to the disabled airspeed compensation logic), the aircraft en-
counters some turbulence (note the abrupt large airspeed fluctuations) followed by
a gust increase of 2.7 m s−1. These effects induce a stall from which the lower-level
control loops spend the next several seconds regaining control. Once lower-level
stabilization is regained, tracking of the guidance commands quickly resumes. This
momentary lapse in low-level stabilization highlights the risk of flying small UAVs in
such conditions and further motivates consideration of coupled longitudinal effects
(e.g. angle of attack) within future iterations of wind-robust guidance and control.

5.2 Track Keeping

Figures 4.9 and 4.10 show position and state trajectories for a portion of a flight
experiment conducted on the ridge of Uetliberg Mountain, Switzerland where
the track keeping mode is enabled. Figure 4.9 details a full 40 s in which the
guidance holds the aircraft at near zero ground speed with less than 1 m track error,
despite facing into gusting winds nearly constantly above the nominal airspeed. In
Fig. 4.9, ∆vwA can be seen effectively tracking the wind excess, while ∆veA adjusts
for deviations from the track caused by smaller turbulences and/or gusts. The
importance of the bearing feasibility function’s buffer zone is further highlighted
here, as β stays near 1, and λ near 90°.
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6 Discussion & Future Work

In this work, we developed and demonstrated a novel guidance law capable of
preventing run-away of small, low-speed fixed-wing UAVs flying in strong winds.
Though the controller was shown effective in flight experiments, one particularly
noteworthy observation during testing was that care should be taken in tuning of
noise values for the wind estimates within the EKF. Though highly dependent on
the given estimation formulation, a general guidance may be taken that too slow
or fast tuning of wind estimation responses causes, respectively, too slow or fast
reactions the airspeed compensation logic, leading in the prior case to steady state
tracking errors, and in the latter case to noisy, oscillatory guidance commands. A
trade-off between the scale of gusts one wishes to capture vs the performance of
the controller should be weighed. It is further apparent that flight within very
turbulent conditions will require future work on coupled wind-robust algorithms
considering longitudinal lower-level dynamics of the UAV. The authors lastly note
that, though not shown here for brevity, the developed guidance law has further
been applied/tested for line segment following.
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Figure 4.9: Flight experiment: Uetliberg, Switzerland (943 AMSL - mountain top).
Aircraft position colored with the current bearing feasibility. Green dashed-dot
lines within the zoom-in plot (right) indicate 1 m bounds on the path. Mean wind
speed was 9.72 m s−1, gusting to 11.3 m s−1 during the flight period. Wind ratio
vs. the angle between wind and bearing vectors over feasibility function boundaries
(top).
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Figure 4.10: Flight experiment: Uetliberg, Switzerland (943 AMSL - mountain
top). Aircraft states for a track keeping experiment in strong ridge updrafts and
horizontal winds.
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1 Background & Scope

In Papers I and II, we developed lateral-directional path following guidance logic for
small fixed-wing unmanned aerial vehicles (UAVs) flying in winds which may exceed
the vehicle’s nominal airspeed command. In particular, Paper II demonstrated
how we may utilize the airspeed reference in an efficient way towards combating
run-away of the aircraft. The airspeed reference compensation was run in a parallel
feedback loop, decoupled from the directional commands.

While the controller was demonstrated effective in numerous flight experiments,
the underlying approach, specifically the airspeed reference compensation, was
largely heuristic and no deeper analysis was presented on the efficiency of the
commands. Our aim in this brief is to investigate particularly this aspect of
energy efficiency, exploring how taking a coupled approach to airspeed and heading
commands can not only reduce energy demands, but further may potentially improve
tracking performance in highly variable winds.

Section 2 will first provide a brief review of the previous guidance logic. Section 3
will develop a new coupled formulation, followed by a comparative simulation study
in Section 4.

2 Windy Guidance Fundamentals

In this section, we provide a brief refresher of the guidance formulation and problem
definition from Papers I and II. Note some details will be omitted, and it is intended
that the reader refer to the previous two works for any definition not presented
here in full.

2.1 Problem Definition
Consider a small fixed-wing UAV at two-dimensional (North, East) position p
with (air mass relative) airspeed vector vA composed of airspeed vA and heading
(clockwise from North) ξ flying in a static wind field with velocity vW . Air and
wind velocities are summed resulting in ground velocity vG = vA + vW . The ratio
of the wind speed to airspeed is notated as β = vW /vA. The aircraft is constrained
to operate between a nominal (desired) and maximum airspeed, vA,nom and vA,max,
respectively.

A desired ground-relative bearing is provided to the aircraft, here represented as
unit vector l̂. Path following logic which generates this bearing may be found in
Papers I and II. It is expected for the purposes of this brief that further, a closest
point pP on the path to the aircraft as well as the path tangent t̂P at that point
are computable. This leads to a definition of the track error vector e = pP − p.
Translating bearings into heading references considers the geometry of the so-

called “wind triangle”, i.e. the triangle created by connecting the wind and airspeed
vector sum to, ideally, a solution with the resulting ground speed vector lying in the
direction of the current bearing. The rotation from ground velocity to air velocity
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runs through angle x. The angle between wind and bearing vectors, a quantity
used quite heavily in the preceding works, we notate as λ.
In Paper II, we formulated a “bearing feasibility” function feas (λ, β) ∈ [0, 1],

which we will further employ here. This function’s output describes the “feasibility”
of following a given bearing at the given wind ratio, one and zero indicating fully
feasible and fully infeasible, respectively.
Ideal and safety objectives were developed for the feasible and infeasible, respec-

tively, tracking cases:

Ideal Objective: Safety Objective:
lim
t→∞

‖e(t)‖ = 0

lim
t→∞

(
t̂P (t)− v̂G(t)

)
= 0

lim
t→∞

(
d

dt
t̂P (t)− d

dt
v̂G(t)

)
= 0


lim
t→∞

aNA,ref(t) = 0

lim
t→∞

v̂A(t) = −ŵ(t)

lim
t→∞

ê(t) = −ŵ(t)

(5.1)

where aNA,ref is a commanded acceleration normal to the airspeed vector (output
from the directional guidance as a function of heading error).

2.2 Directional Guidance
We first define the bearing “feasibility” conditions, i.e. when the bearing can actually
be tracked, given the current wind ratio β and wind-to-bearing angle λ:{

infeasible |vW × l̂| ≥ vA ∪
(
vW • l̂ ≤ 0 ∩ vW ≥ vA

)
feasible else

(5.2)

where vW sinλ = vW × l̂ and vW cosλ = vW • l̂; the symbols × and • denoting
the (scalar) vector cross product and dot product, respectively, of the fore and aft
vectors.

If bearing is feasible and we take the “high speed” solution:

vA sinx = vW × l̂ (5.3)
vA cosx = proĵl vA (5.4)

vG,l = vW • l̂ + proĵl vA (5.5)

sin ηc = σl feas (λ, β) feas (λ0, β)
vGκP

vAk

(
1 +

vW • l̂

proĵl vA

)
(5.6)

cos ηc =

√
1− sin2 ηc (5.7)

proĵl vA =

√
vA2 −

(
vW × l̂

)2
(5.8)
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where vG,l is the ground speed along the bearing vector. feas (λ, β) and feas (λ0, β)
are instantaneous and on-track bearing feasibilities, “on-track" (denoted with
subscript 0) indicating that we calculate the feasibility of the path tangent at the
current closest point on the path from the aircraft at the current aircraft orientation
and speed. σl is a smooth function of the track error bringing in the effect of this
curvature dependent rotation only when we are near to the track. The multiplied
feasibilities serve to zero-out the curvature adjustment when tracking the bearing
is infeasible. Controller gain k is further elaborated in Paper II.
If the bearing is feasible and we take the “low speed” (or “backwards”) solution,

the following quantities are augmented as follows:

vA cosx = − proĵl vA (5.9)

vG,l = vW • l̂− proĵl vA (5.10)

For a given airspeed, equations (5.3) and (5.4) can be formed into a rotation matrix
through angle x, and similarly equations (5.6) and (5.7) through ηc, transforming
the bearing vector into a heading reference l̂A.
If the bearing is infeasible, the safety objective is satisfied using the following

control:

l̂A =

√
vW 2 − vA2 l̂− vW

‖
√
vW 2 − vA2 l̂− vW ‖

(5.11)

The relevant geometry from the above equations is visualized in Fig. 5.1.

Practical Note. All calculations in this section and those that follow may be
computed without use of any trigonometric functions which can save processing
power on small, embedded autopilot platforms.

2.3 Decoupled Airspeed Reference; Feedback Approach
In the previous works, the airspeed reference was utilized to combat wind excess
(wind speeds exceeding the nominal airspeed) in a primarily feedback formulation,
i.e. waiting for any fed back track errors or forward ground speed undershooting,
then compensating by incrementing the airspeed reference above the nominal speed.
Several modes were established:

• Mitigation: use only the directional guidance and reduce the rate of run-away
from the track.

• Regulation: increment the airspeed reference to match the current wind
speed, i.e. regulating wind excess.

• Track Keeping: inject additional energy (airspeed) to 1) overcome wind
excess and 2) return to the track.

• Minimum Ground Speed: increase the airspeed reference to maintain a
minimum forward ground speed.
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2 Windy Guidance Fundamentals

Figure 5.1: Wind triangle geometry. (Left) Airspeed solutions to several bearings
with minimum ground speed set to zero. (Right) An example of an airspeed solution
with a non-zero minimum ground speed.

Each higher mode automatically falls back to the descending lower modes when
the required airspeed increment exceeds the maximum airspeed (track keeping
and minimum ground speed modes only used exclusive to the other). In Paper II
the track keeping mode augments the ideal tracking objective by removing the
directional requirement and further including the safety objective’s acceleration
requirement, i.e. the aim is to return to the track, and remain at zero track error
with zero ground speed until the wind receded:

Track Keeping Objective:
lim
t→∞

‖e(t)‖ = 0

lim
t→∞

vG(t) = 0

lim
t→∞

aNA,ref(t) = 0

(5.12)

The following regulation and track keeping, respectively, airspeed increments
were used to achieve the objectives of each of the modes:

∆vA,w = constrain
(
vW − vA,nom, 0,∆vA,max

)
(1− feas (λ, β)) (5.13)

∆vA,e = ∆vA,emaxkekw (1− feas (λ, β)) (5.14)
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where ∆vA,max = vA,max − vA,nom, ∆vA,emax is the applied increment at the
user defined track error threshold, ke is a function of the track error, kw prevents
incrementing when β < 1, and constrain (·,min,max) is a clamp function.

Minimum ground speeds were maintained by “faking” a higher wind speed in the
wind ratio and airspeed increment feedback, i.e.:

βG =
vW + vG,min

vA
(5.15)

∆vA,w = constrain
(
vW − vA,nom + vG,min, 0,∆vA,max

)
(1− feas (λ, β)) (5.16)

3 Coupling Heading and Airspeed References

While the airspeed compensation approach in the prior work was shown effective in
satisfying the objectives, the airspeed increments were heuristic by design and no
proper investigation into their efficiency was shown. Further, we hypothesize that
coupling the heading and airspeed references could additionally improve tracking
performance, feeding forward the the correct directional command corresponding
to the airspeed dependent wind triangle solution.
This section will develop a new coupled formulation following a principled ap-

proach to minimizing airspeed demand, the underlying assumption being that the
nominal reference airspeed is optimized for efficiency by the operator and, within our
flight envelope, any additional airspeed demand equates to greater power demands.
Thus, our aim is to satisfy our objectives while minimizing the airspeed usage.

3.1 Minimum Ground Speed Redefined
We define the “along-bearing” ground speed vG,l, as our forward ground speed
maintenance objective (corresponding to our desired minimum ground speed vG,min),
where forward ground speed is defined vG,fwd = vG • l̂, as oppose to vG • v̂A in
Paper II. Our rationale being that forward progress along the bearing is the actual
objective we wish to achieve, independent of our aircraft’s heading (so long as we
satisfy command continuity). Further, as we’ll see in the development below, the
wind triangle gives us an explicit solution for along-bearing ground speed, whereas
maintaining the projection onto the heading vector would require a numerical
solution.

3.2 Reference Logic
If we are given a specific airspeed at which to operate, the previous works have
already provided means by which to compute a wind triangle solution. E.g., if we
want to operate at nominal airspeed vA,nom, we can check the feasibility of the
desired bearing l̂ and then follow the logic provided in Section 2.2. When our bearing
is nominally infeasible, i.e. infeasible for the nominal airspeed, but we have more
allowable airspeed (up to the maximum) to use in combating the wind, the question
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3 Coupling Heading and Airspeed References

is then what reference to set our airspeed to, and what heading that reference
corresponds to. We further want any air velocity command to continuously change
with continuously variable bearings and wind ratios, and attempt to minimize
airspeed usage while satisfying any given objectives.
To start, we’ll consider simply attempting to stay on the desired the bearing at

any forward speed. In Fig. 5.1 (left), we can see a nominally feasible bearing, solved
on the nominal airspeed circle. If we imagine the bearing line rotating further
counterclockwise until it is aligned with the nominal feasibility barrier (tangent to
the nominal airspeed circle), we reach a heading to bearing angle of 90°. Rotating
the bearing further outside the nominally feasible region, we can see that the
minimum airspeed solution to the wind triangle is then to maintain this right angle,
making our minimizing airspeed:

vA,min = |vW × l̂| (5.17)

Rotating the bearing even further (beyond the maximally feasible region, i.e. all
space contained within the vA,max radius), we then have no more option to increase
the airspeed, and we can continuously default back to mitigation via (5.11).

The logic above effectively considers zero minimum ground speed in the maximally
feasible region. If we want to make progress towards a goal, we may need to consider
a non-zero minimum ground speed. Looking to Fig. 5.1 (right), we can see an
example of the geometry of applying this minimum ground speed. If we start from
the minimal airspeed usage condition shown in Fig. 5.1 (left), we can simply rotate
the heading along the bearing line until intersect the minimum ground speed circle,
and minimize our airspeed usage while still satisfying the desired along-bearing
ground speed. Note this logic similarly applies for the nominally feasible condition;
i.e. if the minimum ground speed radius obtrudes on the nominal airspeed radius,
we can switch to following the prior as necessary. The minimizing airspeed for the
violated minimum ground speed condition is then:

vA,min =

√(
vG,min − vW • l̂

)2
+
(
vW × l̂

)2
∈ vG,min > vW • l̂ (5.18)

Figure 5.2 provides a more comprehensive visualization of how these airspeed
reference paths look for different conditions in what we call “snowman” patterns. A
pseudo algorithm is given in algorithm 1.
With an air velocity reference obtained from the new logic, we have both an

airspeed and directional reference which can be applied to the vehicle. Note that
path curvature may still be considered by rotating the air velocity reference through
the path curvature adjustment angle. For the purposes of this brief, we will follow
the same directional control allocation method as in Paper II.
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Figure 5.2: “Snowman” patterns for various wind speeds and commanded minimum
ground speeds. The highlighted curve shows, for each commanded bearing, the
reference airspeed and heading necessary to achieve the desired minimum ground
speed while minimizing airspeed usage. All diagrams assume the “fast” or “forward”
nominally feasible solution except for the bottom right diagram, which demonstrates
how the “backwards” nominally feasible solution behaves. vA,nom and vA,max are
10 m s−1 and 16 m s−1, respectively, for all diagrams. Note the dashed “infeasible”
reference refers to the inability to achieve the desired vG,min.
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Algorithm 1 Reference air velocity guidance. solveFeasible (·) and
solveInfeasible (·) take an airspeed reference as input and solve for the feasible
or infeasible wind triangle solution, respectively, via the geometry elaborated in
Section 3.

if vG,min > vW • l̂ then
Minimum ground speed and/or track keeping:
Compute vA,min with (5.18)
if vA,min > vA,max then
if bearing is maximally feasible then

vA,ref = solveFeasible
(
vA,max

)
else

vA,ref = solveInfeasible
(
vA,max

)
end if

else if vA,min > vA,nom then
vA,ref = solveFeasible

(
vA,min

)
else

vA,ref = solveFeasible
(
vA,nom

)
end if

else
Wind excess regulation and/or mitigation:
if bearing is nominally feasible then

vA,ref = solveFeasible
(
vA,nom

)
else if bearing is maximally feasible then
if vW • l̂ ≤ 0 then

vA,ref = −vW
else

Compute vA,min with (5.17)

vA,ref = solveFeasible
(
|vW × l̂|

)
end if

else
vA,ref = solveInfeasible

(
vA,max

)
end if

end if

3.3 Track Keeping Objective as a Minimum Ground Speed

Differently from Paper II, we implement the track keeping objective as another
superposed minimum ground speed using a simple proportional relationship to the
normalized track error e′ = constrain

(
‖e‖
eb
, 0, 1

)
:

vG,mine = vG,e constrain
(
kee
′, 0, 1

)
(5.19)
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Figure 5.3: Snowman patterns as the vehicle converges to the path (left to right)
using a track keeping minimum ground speed.

where eb is a speed dependent track error bound, see Paper II for definition, vG,e is
the minimum ground speed demand when kee′ = 1, and ke ≥ 1 (note the abuse of
notation here) similar to Paper II scales the normalized track error to e.g. demand
full minimum ground speed for more of the region between the track error bound
and the path.
We can now use both the track keeping and minimum ground speed objectives

simultaneously without any deleterious effects. An example of the progression
of vG,mine as the vehicle approaches the track can be seen in the track keeping
snowman patterns in Fig. 5.3.

3.4 Applying the Backwards Solution
Primary reasons the “backwards” or “low-speed” heading solution to the feasible
excess wind case has yet to be implemented in practice include 1) non-continuous
heading references at unity wind ratio crossing and 2) non-trivial criteria for when
either solution should optimally be utilized considering lags in aircraft dynamics
and proximity to the track. For the purpose of this brief, we give an example of how
the backwards heading solution could potentially be used with all other developed
modes given that we are operating in stable excess wind, i.e. the wind speed is
not expected to decrease below the nominal airspeed, where command continuity
would then be violated. For the case that the nominal wind ratio is expected to
vary above and below the unity line, either some mechanism of predicting the rate
of this change or a hard bound on the excess wind level above which it is safe to
apply the backwards solution would be required.

If our aim is to maintain the minimum energy solution in any airspeed compensa-
tion mode, we luckily do not need to change anything from the previous formulation.
However, as the backwards solution is a “low-speed” one (ground relative), when we
are far away from the track, it would benefit us to define some switch point before
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which we can use the high speed solution and after provide enough time for a full
turn around before converging to the path. Towards this end, a conservative “turn
around” time tturn, and corresponding distance dturn can be defined as the time it
takes to make a 180° turn in the current wind condition considering instantaneous
acceleration at the maximum allowed roll angle and assuming we start from a direct
approach to the path at nominal airspeed:

tturn = π/ξ̇max (5.20)

ξ̇max =
g tanφmax

vA,nom
(5.21)

vG,l(t) = vW + vA,nom cos
(
ξ̇maxt

)
(5.22)

dturn =

∫ tturn

0
vG,l(t)dt = vW t+ ξ̇−1

maxvA,nom sin
(
ξ̇maxt

)
|tturn
0 =

vW π

ξ̇max
(5.23)

The above relationship will be used in an exemplary simulation in Section 4.4.

4 Simulation

In this section, we present simulation comparisons of our new coupled guidance law
with the controller developed in Paper II, evaluating airspeed reference efficiency
and tracking performance. Last, we present an example simulation of the backwards
wind triangle solution using the method described in Section 3.4.

4.1 Model and Environment
For a preliminary simulation study, we employ a simple two-dimensional unicycle
model with first order time constants for airspeed and roll tracking, see (5.24)-(5.27).

ṗ = vA

(
cos ξ
sin ξ

)
+ vW (5.24)

ξ̇ =
g tanφ

vA
(5.25)

φ̇ =
φref − φ
τφ

(5.26)

v̇A =
vA,ref − vA

τv
(5.27)

All simulations are run in python using the SciPy odeint integrator for model
propagation. The control loop is executed at 10 Hz. Model and controller parameters
common for all simulations can be found in Table 5.1. Except where specified (or no
longer existing), control parameters for both the decoupled and coupled approaches
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Table 5.1: Common model and control parameters for simulations.
Param Value Unit
τφ 0.4 s
τv 1.0 s

vA,nom 10.0 m s−1

vA,max 16.0 m s−1

are identical to those used in Paper II. Where the airspeed reference logic for the
decoupled controller will follow the approach described in Section 2.3, also from
Paper II.

4.2 Airspeed Reference Efficiency Comparison

To compare the efficiency of the new reference commands to that of the decoupled
approach, a loiter following simulation was run for either case. Simulation states
are shown in Fig. 5.4 and the corresponding time averages of airspeed reference and
track error are tabulated in Table 5.2.

Table 5.2: Airspeed reference efficiency comparison results for tracking of a 60 m
radius loiter in 8 m s−1 East wind with a minimum ground speed setting of 8 m s−1.
See Fig. 5.4 for periodic states. Note the averages listed below are time averages.

Decoupled Coupled
Average Airspeed Reference 15.04 m s−1 12.73 m s−1

Average Track Error 0.21 m −0.11 m

Noteworthy is that the coupled approach indeed demands less airspeed (on
average a 23 % reduction over the decoupled approach, normalized for the nominal
airspeed) and further reduced track error, though both methods have track errors
mostly below 1 m, so tuning could potentially close the small gap between them.
Such a savings in airspeed demand are significant for prolonging aircraft flight
endurance.

The coupled approach does, however, undershoot the prescribed minimum ground
speed slightly more than the decoupled approach. This is due to the more exact
reference (not over compensated) demand we are giving at all bearings, and the
lag in airspeed response. The decoupled approach eliminates this undershoot by
simply applying more than necessary airspeed commands throughout the loiter.
Future work examining the change in airspeed reference with respect to the change
in bearing could potentially provide a feed forward acceleration reference for the
coupled approach which could mitigate these undershoots.
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Figure 5.4: Airspeed reference efficiency comparison results for tracking of a 60 m
radius loiter in 8 m s−1 East wind with a minimum ground speed setting of 8 m s−1.
Two converged loiter periods are shown for each simulation. References are shown
in dashed grey lines, states in blue solid.

4.3 Track Keeping Comparison
As the simulation comparison in the last section was mostly a static evaluation of
the reference commands, we wish to further explore the difference between coupled
and decoupled approaches in a dynamic environment where winds, as in real life,
may be quite variable, changing both direction and magnitude. We also wish to
test the new minimum ground speed formulation of the track keeping objective.

An arbitrary combination of time varying sines and cosines are used to generate
(quite aggressive) wind gusts acting on the aircraft. We note that the wind estimation
is assumed perfect in this simulation, as we wish to evaluate the controllers in
ideal conditions. Further, no force-dependent transients are modeled, meaning the
aircraft is instantly in “steady state” with respect to the air mass. Investigation into
force transients and wind estimation delays on the performance of these controllers
should be conducted in future work.
The general minimum ground speed is set to zero, but track keeping is enabled

with vG,e = 4 m s−1.
Figures 5.5 and 5.6 show the results of the two control approaches. We can

qualitatively see that the coupled approach maintains closer proximity to the path,

83



Paper III: Wind Fighting Efficiency Revisited . . .

−50

0

T
ra

ck
E

rr
o
r

[m
] Decoupled

−25

0

25

R
o
ll

[d
eg

]

10

15

A
ir

sp
.

[m
s−

1
]

5

10

15

W
in

d
S

p
.

[m
s−

1
]

Speed

Dir. 75

100

0 10 20 30 40 50 60

Time [s]

0

1

F
ea

s.

−50

0

Coupled

−25

0

25

10

15

5

10

15

75

100

W
in

d
D

ir
.

[d
eg

]

0 10 20 30 40 50 60

Time [s]

0

1

Figure 5.5: Track keeping in dynamic winds. Coupled and decoupled control
performance.

actually commanding more airspeed than the decoupled approach within the first
10 s of the simulation. This is likely due to the feed forward behavior of the coupled
controller, whereas the decoupled controller must wait until tracking errors are fed
back.

4.4 Backwards Solution
The simulation shown in Fig. 5.7 demonstrates the different tracking behaviors
of the backwards and forward wind triangle solution. Note that both simulations
shown are using the coupled guidance logic. As in the previous simulation, we set
the general minimum desired ground speed to zero, but track keeping is enabled
with vG,e = 4 m s−1.

In the first 10 s of the backwards simulation we can see the aircraft adhering
to the turn around condition until reaching c.a. −100 m East (see the position
plot). From here, the plane allows itself to be blown backwards into the path as we
can see by the negative values in the vG • v̂A plot. Both forward and backwards
solution are able to converge to the track, and, given we have static winds here, are
able to converge to the limiting conditions outlined in the track keeping objective,
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Figure 5.6: Position trajectories for track keeping in dynamic winds.

see 5.12, on the far (positive East) side of the loiter path. I.e., the ground speeds
converge to zero, on track, with zero roll commanded, corresponding to zero lateral
acceleration command.

We can see that the backwards solution, given the necessary utilization method-
ology, may be promising for further increasing controller efficiency, as the “slow”
solution requires less instantaneous airspeed demand, or even increasing tracking
performance on a given path segment since slower ground velocities require less
roll control action to maintain curvature. However, quantifying the utility of this
solution over the forward solution, and when it may be better or worse to employ,
should be the subject of future work and surely will require some thought due to its
discontinuous reference behavior at unity wind ratio (one could potentially imagine
a branch of sampling based techniques for short flight segments).

5 Conclusions & Future Work

In this brief, we revisited the airspeed compensation logic developed in Paper II,
developed a new coupled heading and airspeed reference guidance formulation, and
compared the efficiency and tracking performance of the two approaches. Further,
we explored a simple approach to implement the “backwards” wind triangle solution
towards following a loiter path, discussing the difference in its behavior compared
to the forward approach, and potential future utilization.
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Figure 5.7: Backwards vs.forward flight simulation using the coupled control law.
East wind at 12 m s−1.
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5 Conclusions & Future Work

The coupled guidance law appears promising in preliminary simulation results,
showing improved airspeed reference efficiency and tracking performance. However,
more work is always necessary. Key points we wish to investigate in the future
include:

• Formal stability analysis, evaluating the objectives in their limits via either a
mathematical proof or appropriate Monte Carlo analysis.

• The influence of wind estimation errors on the performance of the algorithm.
In particular, in dynamic winds (e.g. found in mountainous regions): What
aircraft instrumentation is sufficient to quickly and reliably provide estimates?
How much we should or should not filter the disturbances before providing
these estimates to the controller? At what point (if any) do wind estimate
errors actually degrade performance over a traditional ground speed -only
feedback approach (with no formal wind estimation)?

• Extension to a coupled 3D guidance law. Consideration of the quite differ-
ent longitudinal vs. lateral dynamics and constraints of aircraft should be
considered in any extension, including prioritization of vertical vs. horizontal
tracking preferences, when high wind components in one or the other axis
may not be simultaneously mitigated.

• Of course, we also must deploy the newly developed algorithms on a real
platform and go into the wild for testing!
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Abstract
In this work we design a high-level Nonlinear Model Predictive Controller
for lateral-directional fixed-wing UAV trajectory tracking in wind. Model
identificaiton of closed loop low-level roll channel dynamics is conducted
towards representing a low-order equivalent of the low-level autopilot re-
sponse to high-level commands. We show trajectory tracking with various
horizon lengths in high winds in simulation and demonstrate track conver-
gence to sequential Dubins Car segments in flight experiments with a small
autonomous unmanned aircraft using the designed algorithm. Discussion
on appropriate objective formulation and weighting is given.
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1 Introduction

Unmanned aerial robots are becoming ubiquitous in today’s society. Whether from
impactful public exposure such as demonstrations of large scale three-dimensional
aerial modeling projects [67], propositions of forward-looking postal delivery [84],
or increasing interest in airborne support for applications including disaster relief
[13, 78], crop monitoring [33], and infrastructure inspection [50], the word “drone”
(for better or worse) is now within the common vernacular. Particularly interesting
platforms, relative to rotor-craft, for their longer endurance and speed in mapping
and sensing applications, are fixed-wing unmanned aerial vehicles (UAVs). Even
more advantageous, within the fixed-wing vehicle class, are small scale and hand-
launchable platforms for their ease of deployment and minimal system complexity.
While a wealth of work on advanced control algorithm design, specifically towards
such systems, is present in recent literature, much still remains within the confines
of simulation, and needs experimental validation.

One particular avenue within this realm is work on optimization-based approaches
towards trajectory tracking. In particular, Nonlinear Model Predictive Control
(NMPC) algorithms offer a broad range of possible formulations and applications.
For instance, one of the earliest uses of NMPC for trajectory tracking control of
unmanned fixed-wing aircraft can be found in the work of Kang et al. [38] Their
cost function was designed to minimize the normal distance from a UAV to a
desired line segment thereby turning the tracking problem into a regulation problem
with an objective to drive the error to zero. The single line tracking cost function
is then extended to allow the tracking of multiple line segments with obstacle
avoidance. Kang et al. follow this up with stability analysis, and verification using
“hardware in the loop simulation.”[39] Both works involve a kinematic model of
an aircraft assuming planar motion and the existence of a low level controller to
track the high level NMPC commands. Yang et al. further extend the previous two
works formulating an adaptive NMPC for fixed-wing navigation through a cluttered
environment, which varies the control horizon according to the path curvature
profile for tight tracking. [86] By adding actuator slew limit to the optimization
termination requirement in addition to the cost monotonocity, they show that the
proposed optimization algorithm removes control input oscillations and tracks the
trajectory more accurately than the conventional fixed horizon NMPC.

The path-following problem for fixed-wing UAV in presence of wind disturbances
is addressed by Rucco et al.[73], where the objective of trajectory tracking with
minimum control effort is fulfilled for a planar aircraft model using a sample-data
Model Predictive Control (MPC) approach. Extension to three dimensions is seen
in [22] , where Gavilan et al. describe a high-level guidance algorithm based on
MPC using a nonlinear 3DoF aircraft model for state prediction. The nonlinear
optimization problem is then solved using a iterative scheme which uses a modified
robust missile guidance law as hotstart to guarantee feasibility.

As outlined from the literature, many possibilities exist for the use of NMPC in
high-level fixed-wing UAV control. However, real-time implementation has been
challenging up until recently, owing to the large computational complexity and time
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taken by the non-convex optimization problem posed. Efforts by researchers such
as Quirynen et al. have focused on exploiting the structure of nonlinear models
with linear subsystems using Implicit Runge Kutta methods, resulting in improved
speeds of the solver.[71] The tools have since then been made available as a part of
the ACADO toolkit [30], allowing user-friendly implementation of system dynamics
and objectives in a MATLAB or C interface, and generating real-time capable code.
With improved computational runtimes, an opportunity now exists to more broadly
field NMPC algorithms on small fixed-wing UAV platforms.
While many of the NMPC approaches cited tend only to consider vehicle kine-

matics, assuming lower-level loops will sufficiently track the higher-level commands,
the concept of identifying lower level dynamics has promise in enhancing the perfor-
mance of the controller. However, system identification of fixed-wing UAVs in the
classical sense, i.e. open-loop analysis, is often off-putting to researchers as it can be
time consuming, tedious, and moreover challenging when e.g. wind tunnel facilities
are not available and flight test based identification must be applied. As opposed to
open-loop analysis where the system response is obtained with no feedback control,
e.g. a direct aileron→roll system model and/or an aileron→roll rate system model,
the objective of closed-loop system analysis is to obtain the system response to
the low-level controller’s command inputs (e.g. stick deflections or roll reference
commands from the high-level controller) to actual roll or roll rate output.

Early examples of system identification for control-augmented fixed-wing aircraft
can be found in the works of Murphy [54], and Mitchell et al. [51]. Their work
concerns gaining an insight into pilot comfort levels with the augmented systems of
highly maneuverable fighter aircrafts by reducing the complex high order longitu-
dinal and lateral directional dynamics to Low Order Equivalent Systems (LOES),
thereby obtaining a quantitative measurement of pilot ratings, as well as possible
explanations of unexpected aircraft behavior. As an example, Murphy uses rudder
pedal force and input stick deflection as inputs, with sideslip angle, stability axis,
roll rate, stability axis yaw rate, bank angle, and lateral acceleration as system
states to identify the closed-loop lateral dynamics. The system is treated as a
Multiple Input Multiple Output (MIMO) system and parameter estimation methods
in Frequency domain are used. LOES models are typically fixed a priori whose
structure can be found in this detailed report[52]. For all these systems, the input
delays play a significant role in flight quality performance and pilot experience.
Morelli took a similar approach to identify the closed loop system for both

longitudinal and lateral directions using LOES models[53]. However, unlike the
previous example, SISO approach is favored here. Different types of maneuvers
are executed, and it is found that certain multi-step maneuvers in combination
with appropriate identification methods could be used instead of frequency sweeps,
which often take longer times and are difficult to execute at high pitch angles.

In recent times, Luo et al.[47] identified the inner closed-loop system of the
roll-channel of a small fixed-wing UAV as a first-order plus time delay model in
order to design a fractional order (PI)λ controller. A fifth order ARX model is
calculated first using least squares algorithms which is then approximated to a
continuous time first order plus time-delay model.
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Capitalizing on new methods for auto-generation of fast NMPC code and the
experience of previous authors in LOES modeling, we explore in this work the
design of a high-level NMPC for real-time implementation on a small UAV, as well
as simplified closed-loop identification procedures for modeling low order system
equivalents of the low-level autopilot system. The identified model is incorporated
into a modular high-level NMPC for general trajectory tracking in wind and verified
through simulation and flight experiments.

2 System Overview

System identification, controller design, and flight experiments within this work are
peformed on a small, 2.6 m wingspan, light-weight 2.65 kg, low-altitude, and hand-
launchable fixed-wing UAV, Techpod, see Fig. 6.1a. The platform is a standard
T-tail configuration, fixed-pitch, pusher propeller. Onboard avionics including a
10-axis ADIS16448 Inertial Measurement Unit (IMU), u-Blox LEA-6H GPS receiver,
and Sensirion SDP600 flow-based differential pressure sensor feed measurements
to a Pixhawk Autopilot, an open source/open hardware project started at ETH
Zurich [68]. Pixhawk features a 168 MHz Cortex-M4F microcontroller with 192 kB
RAM for online state estimation and low-level control. A light-weight, robust
Extended Kalman Filter runs onboard fusing sensor measurements to provide state
estimates including a local three-dimensional wind vector, modeled statically with
slow dynamics. [42] As Techpod flies at a nominal airspeed of 14 m s−1, the aircraft
is easily susceptible to high winds present in low flight altitudes (below 500 m
AGL), motivating explicit consideration of wind estimates within high-level position
control.

(a) In-flight (b) Avionics / hardware

Figure 6.1: Techpod, test platform.
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Figure 6.2: Control architecture

As processing power on the Pixhawk microcontroller is somewhat limited, an
additional onboard ODROID-U3 computer with 1.7 GHz Quad-Core processor and
2 GB RAM, running Robotic Operating System (ROS) [72] is integrated into the
platform for experimentation with more computationally taxing algorithms. High-
level controllers can be run within ROS node wrappers which communicate with
the Pixhawk via UART serial communication; average communication latency was
observed <3 µs, see Fig. 6.1b.

The control architecture implemented on Techpod in the current work can be seen
in Fig. 6.2. The low-level autopilot, all processed onboard the Pixhawk, contains
a standard cascaded PID structure with additional compensation for coordinated
turns, i.e. a yaw damper signal, rr = g sinφ

V
. Attitude errors are fed to a PI block

followed by rate errors running through a D block (proportional gain on rates),
finally generating appropriate actuator commands δe, δa, δr (elevator, aileron, and
rudder deflections, respectively). The EKF feeds back appropriate signals to each
respective controller resulting in a stabilized closed loop low-level system. For
the purposes of this work, we consider only the typical flight regimes employed in
the vast majority of UAV missions, where flight is mostly planar, and maneuvers
are mostly docile. Within this regime, the described PID control architecture is
reasonably fit to track attitude commands for higher level trajectory following
objectives.
High-level altitude and airspeed control is achieved with an implementation

of the Total Energy Control System (TECS), also onboard the Pixhawk Flight
Management Unit (FMU). Airspeed references are mostly tracked utilizing pitch
commands, and altitude holds are maintained using throttle inputs δT . We assume
altitude and airspeed are reliably tracked, and our focus lies with lateral-directional
trajectory tracking. Detail into the last remaining blocks in the control architecture
will be elaborated in Section 4.
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3 Flight Dynamics & Identification

In this section, we consider the lateral-directional kinematics of fixed-wing aircraft,
expressed under a coordinated turn assumption, as follows in the inertial frame, FI :

ṅ = V cos ξ + wn
ė = V sin ξ + we
ξ̇ = g tanµ

V

(6.1)

where n and e are the Northing and Easting positions, respectively, ξ is the heading,
V is the air-mass-relative airspeed, µ is the bank angle, g is the acceleration of
gravity, and wn and we are the Northing and Easting components of the wind
vector, respectively. Note that bank, µ and heading, ξ angles are defined about the
air-mass-relative airspeed vector. This distinction is important when considering
flight dynamics in wind, where the ground-relative flight path of the vehicle is
defined as the course angle, χ from North, n̂ to the ground speed vector, vg, see
Fig. 6.3.

Figure 6.3: Inertial Frame Definitions

Making the assumption that the low-level controller is able to adequately regulate
sideslip and altitude, i.e. the airspeed vector lies on the body-x axis, we may
reasonably make the simplification of equating roll, φ and bank, µ angles, which are
typically very close in value. This assumption is useful when prescribing attitude
references to the low-level controller, which considers estimated body-axis, FB
defined Euler angles as feedback.
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The kinematics described in equation (6.1) can be further enhanced with knowl-
edge of the underlying low-level closed-loop plant dynamics. I.e. identifying a
representable transfer function, φ

φr
(s) from the roll input, φr received by the

low-level autopilot, to the resulting roll angle, φ measured in stabilized flight.
The objective of closed-loop system identification is to capture the dynamics of

the aircraft with the low-level controller in the loop, which guarantees the flight
stability of the UAV under various maneuvers. The low-level PID controller should
be appropriately tuned before the system identification experiments, though to
what degree the low-level loops perform is not necessarily important (outside of
instability), as the identification should capture whatever dynamic is present for
use in the high-level controller.
For identification of the roll channel, a series of multi-step inputs called 2-1-1

maneuvers were chosen. A 2-1-1 maneuver is a modified doublet input, which ideally
consists of alternating pulses with pulse widths in the ratio 2-1-1. As demonstrated
by Morelli[53], flight time required for the 2-1-1 maneuver is approximately one-sixth
of the time required for the standard frequency sweep maneuver, thus enabling
one to gather more data in the same flight time, which is often limited by battery
capacity. At the same time, concatenated 2-1-1 maneuvers make for suitable
identification inputs for both frequency and time domain system identification
approaches, at par with frequency sweeps. For our purposes, a unit pulse width of
1 s was chosen. Amplitude of these maneuvers were varied in the range allowed by
the low-level controller, i.e., |φ| ∈ [0◦, 30◦].

Ordinarily, once in stabilized mode, the low-level controller receives its pitch and
roll command references from a high-level controller, such as L1-Navigation (also
known as Nonlinear Guidance Law, NLGL) [75] for lateral-directional path following
and TECS (Total Energy Control System) for airspeed and altitude control. For
system identification experiments, the autopilot source code was modified such
that, once the system identification switch on the RC transmitter was on, pitch and
roll commands from high level controller are over-written by commands for system
identification maneuvers. For roll channel identification, pitch reference command
to the low-level controller was kept at zero, while the roll reference command was
varied as per the 2-1-1 maneuvers. An example can be seen in Fig. 6.4. With
appropriate settling time added before and after the maneuvers, a set of two 2-1-1
maneuvers could be performed at a stretch, which facilitates concatenation of data
later for system identification. Several different data sets are collected in this
manner, including some with different roll amplitudes.
For system identification analysis, simple ARX models up to fifth order were

chosen. Models beyond that order were likely to overfit the data, and additionally,
would add too many additional states to the high-level controller, increasing com-
putational complexity and size. For every data-set, 20 ARX models with different
numbers of pole-zero combination were created. Additionally, each of the 20 models
was also evaluated with and without a set of delays, resulting in 10 variations of
every ARX model. See time responses of the various models in Fig. ??.

For system identification, time domain based Instrument Variables (IV) method
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is used considering the ease of use facilitated by ready to use computation tools,
and guaranteed good results[47] [53].
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Figure 6.4: Sample system ID maneuver with respective roll angle output.
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Figure 6.6: Validation fits on different data sets with different order models.

Once the individual ARX models with and without delays for a particular order
model were evaluated, the best among them was chosen. This was then compared
with similarly chosen ARX models of different combinations of zeros and poles.
With every data-set, fifth order models typically gave best individual fits to the data
sets, however second and third order models tended to generalize more and give
better validation fits. Further, the addition of delay did not have any significant
effect on improving the model fits to validation data. Since our NMPC is formulated
in continuous time (see more information in Section 4), and modeling of a delay
there is more difficult, inclusion of delay for the sake of an insignificant increase in
model fit is not justified. The models of a particular order with the best fits among
the different models of the same order are shown in Fig. 6.6

Considering all the factors, namely ease of augmentation to the system dynamics
and the size of computational complexity thereby, and good model fits to validation
data-sets, a second order model of the following form was chosen.

b0

s2 + a1s+ a0
(6.2)

From this model, the kinematics in equation (6.1) are augmented in the time
domaim with two differential equations describing the identified second order roll
channel dynamics. Note, again, that we assume µ ≈ φ.(

µ̈
µ̇

)
=

(
µ̇

b0µr − a1µ̇− a0µ

)
(6.3)
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4 Nonlinear Model Predictive Control

In this section, we formulate a high-level lateral-directional trajectory tracking
controller in a Nonlinear Model Predictive Control (NMPC) scheme. A general
objective is constructed for minimizing the position error to a given track,

et = (d− p)× T̄d (6.4)

where T̄d is the unit tanget vector at the closest point d from the UAV position p
to the current path, while also aligning the vehicle course with the desired trajectory
direction, i.e. minimize

eχ = χd − χ (6.5)

where χd = atan2
(
T̄de , T̄dn

)
∈ [−π, π]. Here, we use the atan2 function from the

standard C math library. See also Fig. 6.3. Use of this general objective formulation
allows inputting any path shape, so long as the nearest point from the UAV position
can be calculated and a direction of motion along the path (i.e. the path tangent)
is given for minimization throughout the horizon. In this paper, we limit our
discussion circle and line following, geometry for which finding the closest point in
the two-dimensional plane has a simple analytic form, the calculation of which will
be omitted for brevity.
We define the state vector x = [n, e, µ, ξ, µ̇, xsw]T , and control input u = µr,

where the augmented state xsw is a switch state used within the horizon in the case
that desired trajectories are piece-wise continuously, or generally discretely, defined.
The switch variable has no dynamic until a switch condition is detected within the
horizon, at which point an arbitrary differential is applied for the remainder of the
horizon calculations. I.e.

ẋsw =

{
α switch condition met ‖ xsw > threshold
0 else

(6.6)

The switch state, then, either has a value of zero (i.e. the aircraft has not met the
switching condition), or some value greater than zero, at which point the internal
model within the controller will switch to tracking the next path throughout the
remainder of the control horizon. When a track switch has been fully achieved
(i.e. with respect to the actual current aircraft position/velocity), the value of the
switch state is reset to zero throughout the horizon.
A relevant example of such a case for fixed-wing vehicles is that of Dubins Car

or Dubins Aircraft, in the three-dimensional case, path following, see [3] . Dubins
paths can be used to describe the majority of desired flight maneuvers in a typical
fixed-wing UAV mission. Further, using continuous curves such as arcs and lines
allow time-invariant trajectory tracking, as oppose to desired positions in time, a
useful quality when only spatial proximity to the track is desired and timing is less
important; for instance, if energy conservation is required and a single low airspeed
reference is given to be tracked. For the remainder of the paper, we will consider
Dubins segments as path inputs to the high-level controller, though it should be

100



4 Nonlinear Model Predictive Control

noted that the objective formulation is not limited to these.
We use the ACADO Toolkit [30] for automatic generation of fast, embedded

C-code implementations of nonlinear solvers and integration methods. Though
formulated in continuous time, a direct multiple shooting technique is used to solve
the optimal control problem (OCP), where dynamics, control action, and inequality
constraints are discretized over a time grid of a given horizon length N . A boundary
value problem is solved within each interval (or shooting node) and additional
continuity constraints are imposed. Sequential Quadratic Programming (SQP)
is used to solve the individual Quadratic Programs using the active set method
implemented in the qpOASES solver [17]. A Gauss-Newton based real-time iteration
scheme is used which iteratively improves the current online solution during each
step of the process during runtime [31]. Note that the ACADO framework does
not explicitly support non-smooth functions. Here, we exploit an option to use
externally defined C-based model and objective functions. Numerical jacobians
are implemented using a finite difference. Both control and numerical stability
properties for this implementation are not guaranteed; however, extensive simulation
studies and flight experimentation have to-date shown no ill effects, provided control
input constraints are set. A more robust investigation into possible instabilities is
to be conducted in future work.

The OCP takes the following continuous form:

min
U,X

∫ T

t=0

((
y(t)− yref (t)

)T
Q
(
y(t)− yref (t)

)
+
(
u(t)− uref (t)

)T
R
(
u(t)− uref (t)

))
dt

+
(
y(T )− yref (T )

)T
P
(
y(T )− yref (T )

)
subject to ẋ = f(x,u) (equations (6.1) & (6.3) & (6.6))

y = h(x,u)

u(t) ∈ U
x(0) = x (t0) .

(6.7)

where y = [et, eχ, µ, µ̇, µr]
T and U : µrmin ≤ µr ≤ µrmax . Here, µr is included

in the objective function doubly; once within the standard control penalty (i.e.(
u(t)− uref (t)

)T
R
(
u(t)− uref (t)

)
), and again within y, allowing the formulation

of a slew rate ∆µr(t) = µr(t) − µrk−1(t), i.e. the deviation from the previous
horizon control solution, which may be penalized by the weight component Q∆µr .
The previous control horizon µrk−1 is stored after the last NMPC iteration step
and input as a reference value during the next. Note, this is not identical to the
typical slew rate penalty often utilized in discrete MPC formulations, but actually
a comparison at each shooting node to the previous control solution at that same
node. The difference between each subsequent time step within the horizon in a
given optimization step is not considered. This penalty is implemented to penalize
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bang-bang control action caused by unregulated action within the first shooting
node between each NMPC iteration. In particular, we are interested in relatively
long horizons for considering optimal path convergence in various windy scenarios
where the ground speed may grow faster than the chosen horizon allows adequate
reaction time. Longer horizons can be achieved without overly increasing the
horizon length, and thus the dimensionality of the problem, by the use of larger
discretization steps, i.e. we use Tstep=0.1 s. This, however, in turn exacerbates
the mentioned issue of bang-bang control action, as the next NMPC iteration
step measurement can possibly deviate enough to induce a large control step. An
example of the issue can be seen in Section 5. As the next action in the control
horizon is applied to the vehicle at each iteration, the deviation in the first few
shooting nodes should be penalized, but not the latter steps, as this would result in
an overall sluggish control performance. To remedy this discrepancy, a decreasing
quadratic function is defined in the control deviation weight horizon, so that latter
nodes are not penalized, and earlier nodes are.

Other online parameters augmented to the model and held constant through the
horizon are the current airspeed V , current wind vector w, and the current and
next sets of Dubins path parameters Pcur, Pnext, where line parameters include
P = {type = 0,a,b}, a and b are two waypoints defining a straight segment, and
arc parameters include P = {type = 1, c, R, dir, ξ0,∆ξ}, c is the center point of
the arc, R is the radius, dir is the loiter direction, and ξ0, is the heading pointing
towards the entrance point on the arc, and ∆ξ is the arclength traveled. The path
segments are managed and rotated based on an acceptance radius and heading
direction criteria.

5 Simulations & Flight Experiments

In this section, we present simulation results as well as real world flight experiments
with the Techpod test platform using the designed NMPC with the identified
low-level model.
Before testing on the platform, extensive two-dimensional simulation of the

kinematics with augmented second order bank dynamics was carried out to obtain
a rough tuning of objective weights as well as experiment with various magnitudes
of wind. A sample of the simulation findings is shown. Displayed simulation results
were obtained using objective weights Qdiag = [0.01, 1, 0.1, 0.01, 100], Rdiag = 10
and end term objective weights Pdiag = [0.1, 10, 0, 0.01, 0]. The discretization time
step within the horizon is Tstep=0.1 s, and the NMPC is iterated every 0.05 s. In
Fig. 6.7, two simulations, one with a control horizon length of N = 40, set as a
minimum to ensure capturing an entire 90° turn at maximum bank, and the other
with N = 80 are initialized at the same position and orientation and commanded to
track a circle in high wind. The vehicles in the simulation were set to an airspeed of
14 m s−1. Further, the desired loiter radius is smaller than the minimum trackable
radius at the given flight speed plus added wind component. Thus, as shown, the
high winds cause a large deviation from the track when the UAVs fly down wind.
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Figure 6.7: N = 40 and N = 80 length horizons for circle tracking in we =
−10 m s−1.

The UAV with the longer horizon is able to foresee the future deviation, and plans
an adverse control action earlier in the loiter to enable less deviation over the
remainder of the horizon. Despite the windy conditions, both horizons, however,
are able to converge initially to the circle when feasible. Further, bank angle rates
are within acceptable limits, and control input constraints are respected.
Fig. 6.8 demonstrates the possible bang-bang effect when the deviation of the

control horizon from the previous solution is not penalized. The displayed control
solutions are take from the same simulation shown in Fig. 6.7.

After testing the controller in simulation. Two flight experiments were conducted
to demonstrate various trajectory following performance. A horizon length of
N = 40 was used with objective weights and end term objective weights set to
Qdiag = Pdiag = [0.01, 10, 0.1, 0.01, 100], R = 10. The discretization time step
within the horizon is Tstep=0.1 s, and the NMPC is iterated every 0.05 s. Solve
times for the NMPC running on the ODROID-U3 vary, depending on the type of
path Pcur the aircraft is following, as well as the next path Pnext in the trajectory,
if there are switches within the given horizon length. Table 6.1 shows the mean,
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Table 6.1: NMPC computational load on ODROID-U3.
Mean [ms] Standard Dev. [ms] Maximum [ms]

Line following 9.96 0.250 10.5
Circle following 13.5 0.439 15.1

standard deviation, and maximum computation times for the controller running
during the Dubins path following experiment (see Figure 6.11). Note these times
include the solver as well as required message handling, path management, and data
conversion executed within each iteration of the ROS node. Computation times
are taken from portions of flight data wherein the aircraft is only tracking a line or
circle, respectively, throughout the control horizon. Switching within the horizon
results in increases or decreases in computations depending on which path is being
tracked and for what portion of the horizon (e.g. circle tracking times will decrease
as a switch to a line path is observed within the control horizon). Both experiments
took place during very calm conditions, and the wind speed was negligible.
In Fig. 6.9, Techpod is commanded towards a box pattern until returning to a

loiter circle. Minimal overshoot is observed, considering the set acceptance radius
of 35 m, and convergence within less than 1 m of position error is observed for each
line segment and the final loiter circle. Figure 6.10 shows the commanded and
actual roll angles as well as the roll rate, which are both kept within acceptable
bounds.
In Fig. 6.11, an arbitrary sequence of Dubins segments were given to the high-

level NMPC. Again, good convergence to the path is seen, with acceptable state
responses shown in Fig. 6.12. Steady-state position error remained within 1 m
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Figure 6.9: Flight experiment: box tracking.
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Figure 6.10: Flight experiment: box tracking attitude and rates.
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after convergence to the path. Note this is without the inclusion of integral action,
and either model uncertainties, or variable wind conditions perhaps not properly
estimated, or gusts could cause larger track errors. The end of the shown flight
path is stopped just before converging to the final loiter due to rain fall starting
during the flight experiment and manual take-over of the aircraft for landing.
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Figure 6.11: Flight experiment: Dubins tracking.

It should be noted that each flight experiment shown here was also flown sepa-
rately with L1 guidance for roll command generation, achieving similar performance
in these non-windy conditions. Our focus in this work, however, is not on com-
paring methods, but verifying the feasibility of the given NMPC formulation in
real flights. In higher wind scenarios such as those shown in simulation, similar
control performance with L1 loops would require some form of wind-dependent
gain scheduling. Similar scheduling would also likely be required for vector-field
based approaches, notorious for being somewhat difficult to tune [3, 80, 81].

6 Conclusions & Future Work

In this paper, we outlined an approach for low order equivalent system modeling and
identification of control-augmented low-level roll channel dynamics for a small fixed-
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Figure 6.12: Flight experiment: Dubins tracking attitude and rates.

wing UAV and, further, demonstrated the importance of their inclusion within the
model of a high-level Nonlinear Model Predictive Controller. The control-augmented
model identification process was observed to significantly decrease identifying flight
time, as well as simplify the resulting model structure, when compared with open-
loop, low-level aerodynamic identification. Open-loop simulation of the identified
dynamics also demonstrated predictable behavior, even within long horizons, due
to the stabilized dynamics; a useful trait for high-level controllers.
An NMPC was designed for Dubins car path following in the two-dimensional

lateral-directional plane, and was shown capable of good tracking performance,
even in high wind conditions (through simulation experiments), and arbitrary path
combinations, shown in flight experiments. Design of the objective function was
elaborated towards avoiding bang-bang control action, and including track switching
behavior within the control horizon. Computation times onboard the ODROID-U3
were observed to be well within feasible limits for online solutions of adequate
high-level command generation (or guidance). Horizon lengths up to eight seconds
were investigated in simulation, and four seconds within flight experiments, showing
utility in the determination of optimal flight path convergence to a given track in
strong wind.

Though promising results, alternative objective functions could easily be designed
and tested as off-shoots from the given basic formulation, e.g. inclusion of obstacle
avoidance, or more complex paths. The true benefit of such an online optimization-
based approach to control is the modularity of the cost function, as well as the
inherent online adaptability to changing environmental conditions. It is this point
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where more simple analytic approaches, e.g. L1 navigation or vector field based
approaches, often require gain scheduling per condition, a process which takes time
to properly tune.
Further future work will focus on extending the approach to three dimensions,

with longitudinal dynamics also included into the formulation. Implications of a
three-dimensional controller on low-level model identification would likely necessitate
MIMO Linear Time Invariant (LTI) plants, or possibly nonlinear model structures,
as longitudinal aircraft dynamics, even when stabilized, typically vary with airspeed
and angle of attack. Last, future work should include stability analysis, both in the
control algorithm, as well as the numerical methods used to solve the sometimes
non-smooth optimization problem posed.
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Nonlinear Model Predictive Guidance for
Fixed-Wing UAVs Using Identified Control

Augmented Dynamics

Thomas Stastny and Roland Siegwart

Abstract
As off-the-shelf (OTS) autopilots become more widely available and user-
friendly and the drone market expands, safer, more efficient, and more
complex motion planning and control will become necessary for fixed-wing
aerial robotic platforms. Considering typical low-level attitude stabilization
available on OTS flight controllers, this paper first develops an approach for
modeling and identification of the control augmented dynamics for a small
fixed-wing Unmanned Aerial Vehicle (UAV). A high-level Nonlinear Model
Predictive Controller (NMPC) is subsequently formulated for simultaneous
airspeed stabilization, path following, and soft constraint handling, using
the identified model for horizon propagation. The approach is explored
in several exemplary flight experiments including path following of helix
and connected Dubins Aircraft segments in high winds as well as a motor
failure scenario. The cost function, insights on its weighting, and additional
soft constraints used throughout the experimentation are discussed.
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1 Introduction

As off-the-shelf (OTS) autopilots become more widely available and user-friendly and
the drone market expands, safer, more efficient, and more complex motion planning
and control will become necessary for aerial robotic platforms. Tools for auto-code-
generation of fast, efficient embedded nonlinear solvers, e.g. ACADO Toolkit [30] or
FORCES1, are becoming popular for the high-level control design of such systems.
Exemplary applications of these tools, using Nonlinear Model Predictive Control
(NMPC), have been experimentally shown on multi-copters for various high-level
tasks such as trajectory tracking [37], inter-vehicle collision avoidance [36], and
aerial manipulation [46]. The NMPC formulation conveniently offers the capability
to solve receding horizon optimal control problems with consideration of nonlinear
dynamics and handling of state/input constraints, a valuable set of functionalities
for flying platforms aiming to satisfy the ever-increasing complexity of desired
autonomous behaviors.
For large-scale sensing and mapping applications, small fixed-wing unmanned

aerial vehicles (UAVs) provide advantages of longer range and higher speeds than
rotorcraft. However, unlike their multi-copter counterparts, experimental imple-
mentation and validation of NMPC approaches on fixed-wing platforms is almost
non-existent. To examine the state-of-the-art in fixed-wing specific NMPC formula-
tion, one must consider simulation studies within the literature. High-level guidance
formulations, using two-degrees-of-freedom (2DOF) kinematic models for horizon
propagation, have been shown for the 2D path following case [38, 39, 86], and with
3DOF kinematic models for 3D soaring [45] or automatic landing [34]. Other works
have considered lower-level formulations, either incorporating all objectives from
obstacle avoidance to actuator penalty directly [24], focusing on low-level states
only, e.g. for deep-stall landing [48], or augmenting the internal low-level model
with guidance logic [80, 81].

Higher-level formulations typically utilize simple parameterless kinematic models,
assuming that lower-level controllers adequately track high-level commands. These
approaches rarely consider details of integration with increasingly ubiquitous OTS
autopilots and their low-level control structures. On the other hand, lower-level
formulations, if implemented on real aircraft, require extensive wind tunnel testing
and/or flight experimentation for actuator-level aerodynamic system identification
(ID), a time consuming and potentially safety-critical process. In our previous
work [82], we first explored the concept of encapsulating the closed-loop autopilot roll
channel response dynamic into the internal model of a high-level lateral-directional
NMPC, taking a ‘middle road’ between full classical ID and model-free formulations.
Broader application of this approach to 3D problems requires extending the control
augmented modeling to a full, coupled lateral-directional and longitudinal structure;
an extension we provide in the present work.

In this paper, we will first develop an approach to modeling and identification of
control augmented dynamics for a conventional fixed-wing platform with a widely

1https://www.embotech.com/FORCES-Pro
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Figure 7.1: Techpod, fixed-wing unmanned aerial test platform.

available OTS autopilot in the loop, utilizing a standard sensor suite. We will
secondly detail a high-level NMPC cost function design for simultaneous airspeed
stabilization, path following, and soft constraint handling, utilizing the identified
model internally. We take special consideration of practical implementation insights
throughout this work, such as explicit consideration of high winds as well as on-
board computational constraints, and conclude with a set of representative flight
experiments for validation of the approach.

2 Control Augmented Modeling

A typical fixed-wing system/control architecture is shown in Fig. 7.2, e.g. similarly
implemented in open-source autopilot firmwares PX42 and Ardupilot3. A low-level
(LL) control structure runs on the pixhawk microcontroller consisting of a cascaded
PD attitude control/rate damping approach with coordinated turn feed-forward
terms, using both rudder and elevator compensation, as well as dynamic pressure
scaling on control actuation, see [60] for more details. High-level (HL) lateral
guidance, e.g. within PX4 firmware L1-guidance [75], steers the aircraft position
and velocity toward waypoints or paths by commanding roll angle references φref,
and airspeed/altitude are controlled, e.g. via Total Energy Control System (TECS)
[6], by commanding pitch angle references θref and throttle input uT . To replace this
high-level module with a unified model predictive controller, one must characterize
the underlying dynamics.

2http://pixhawk.org
3ardupilot.org
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Figure 7.2: Model abstraction of the closed-loop attitude dynamics, open-loop
velocity-axis dynamics, and 3DOF kinematics.
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Figure 7.3: Inertial I and body B axes and state definitions.

Here, we propose a “cascaded" modeling approach, defining two low-level model
structures as grey-box models: 1) the stabilized, closed-loop attitude dynamics,
(7.1), and 2) the open-loop velocity-axis dynamics, (7.2). Their outputs are fed
to the standard (parameterless) 3DOF kinematic equations (7.4). State/axes
definitions may be seen in Fig. 7.3.

2.1 Closed-loop attitude dynamics
We model the input-output relationship of the closed-loop LL attitude controlled
system in (7.1); specifically, how the attitude and body rates respond to attitude
references. The structure contains coupled lateral-directional and longitudinal states
and parameters as well as nonlinearities, particularly owing to the longitudinal
effects. LL controllers are often tuned for one, or very few, trim conditions around
the standard flight operation point, allowing the control augmented behavior
throughout the flight envelope to vary, further motivating included nonlinear
airspeed dependence.

φ̇

θ̇
ṗ
q̇
ṙ

 =


p

q cosφ− r sinφ
lpp+ lrr + leφ (φref − φ)

vA
2 (m0 +mαα+mqq +meθ (θref − θ))

nrr + nφφ+ nφrefφref

 (7.1)

where Θ = [φ, θ] is the aircraft attitude (roll and pitch, respectively), ω = [p, q, r]T

are the body roll, pitch, and yaw rates, respectively, vA is the airspeed (air-mass
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relative), and ϕCL =
[
lp, lr, leφ ,m0,mα,mq ,meθ , nr, nφ, nφref

]T
is the set of

parameters to identify.

2.2 Open-loop dynamics

As airspeed is controlled on a high-level basis within the given autopilot structure,
there exists a non-stabilized (open-loop) dynamic from throttle input to UAV
outputs we must model, see (7.2).

˙vA
γ̇

ξ̇
˙δT

 =


1
m

(T cosα−D)− g sin γ
1

mvA
[(T sinα+ L) cosφ−mg cos γ]

sinφ
mvA cos γ

(T sinα+ L)

(uT − δT ) /τT

 (7.2)

where m is the mass, g is the acceleration of gravity, γ is the air-mass relative flight
path angle, α is the aircraft angle of attack (AoA), δT is a virtual throttle state
lagged from input uT ∈ [0, 1] by time constant τT , and ξ is the aircraft heading,
defined from North to the airspeed vector.

This 3DOF model is often used as a simplified dynamic formulation in aerospace
controls literature, containing only forces, the assumption being that moments are
controlled on a lower-level and the overall behavior of the high-level states may be
described in a quasi-steady manner. Further, the model only considers forces in
the longitudinal axis, making the assumption that no aerodynamic or thrusting
side force is generated, in part due to an assumption that the low-level controller
appropriately regulates sideslip. By neglecting sideslip, which is challenging to
observe without a vector airdata probe or alpha-beta vane, we are also able to make
the approximate relationship α ≈ θ − γ (similarly necessary as α is not directly
measured) and that heading angle ξ is assumed equivalent to aircraft yaw angle. We,
however, retain the velocity-axis convention, vV = [vA, γ, ξ]

T , for aircraft heading
ξ as a means to distinguish between lower- and higher-level modeling descriptions.
The force equations are shown in (7.3).

T =
(
cT1δT + cT2δT

2 + cT3δT
3
)
/v∞prop

D = q̄S
(
cD0

+ cDαα+ cD
α2
α2
)

L = q̄S
(
cL0 + cLαα+ cL

α2α
2
) (7.3)

where motor thrust T is modeled as power P, a function of throttle input,
over the effective propeller free stream, approximated as v∞prop ≈ vA cosα.
Lift L and drag D forces are scaled with dynamic pressure q̄ and wing sur-
face area S. The elaborated model structure contains grey parameters ϕOL =[
cT1

, cT2
, cT3

, τT , cD0
, cDα , cDα2

, cL0
, cLα , cLα2

]T
to be identified.
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2.3 3DOF kinematics
Finally, parameterless 3DOF kinematics propagate the position through time in
wind: ṅė

ḋ

 =

vA cos γ cos ξ + wn
vA cos γ sin ξ + we
−vA sin γ + wd

 (7.4)

where r = [n, e, d]T are the inertial frame Northing, Easting, and Down position
components, respectively, and w = [wn, we, wd]T are the inertial frame wind
components, modeled as static disturbances.

3 System Identification

3.1 System overview
All development and experimentation within this work is conducted on the 2.6 m
wingspan, 2.65 kg, hand-launchable fixed-wing UAV – Techpod, see Fig. 7.1. The
platform is a standard T-tail configuration, fixed-pitch, pusher propeller integrated
with a 10-axis ADIS16448 Inertial Measurement Unit (IMU), u-Blox LEA-6H GPS
receiver, and Sensirion SDP600 flow-based differential pressure sensor coupled with
a one-dimensional pitot-static tube configuration. Sensor measurements are fused
in a light-weight, robust Extended Kalman Filter (EKF) [42] running on board
a Pixhawk Autopilot (168 MHz Cortex-M4F microcontroller with 192 kB RAM)
generating state estimates including a local three-dimensional wind vector, modeled
statically with slow dynamics.

3.2 Data collection and organization
Data from five approx. 40 min flight tests was collected containing 72 experiment
sets (with 1 or 2 identification maneuvers each) spanning a range of 28 static, 35
dynamic, and 9 free-form preprogrammed maneuvers, covering the operational flight
envelope (i.e. vA ∈ [11, 18]m s−1, φ ∈ [−30, 30]°, and θ ∈ [−15, 15]°), all with active
attitude stabilization. A 70-30 percent ratio was used for training and validation
groups on the static and dynamic sets (together, 87.5 % of the total number of sets),
while the free-form sets were all held back for a “testing" group (the remaining
12.5 %).

• Static experiment sets refer to fixed airspeed vA, throttle input uT , and flight
path angle γ with no dynamic maneuvering (i.e. constant φref and θref).

• Dynamic experiment sets were conducted at various flight speeds and flight
path angles utilizing 2-1-1 step inputs (see [53]) for all uT , φref, and θref to
excite the low-level autopilot response dynamics.
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• Free-form experiment sets refer to manually commanded attitude references
and throttle inputs to the stabilized system in an arbitrary fashion.

Note that inputs were applied in both independent and coupled combinations (see
Figures 7.5 and 7.6 for an example of a coupled identification maneuver). All static
and dynamic maneuvers were initialized at trim reference commands for a settling
period before enacting the steps. For repeatable experiments, commands were
generated in a mostly automated fashion on-board the pixhawk. A data logging
rate of 40 Hz was found sufficient to observe the stabilized dynamic responses within
the maneuvers. Care was taken to fly on windless days, and on-board estimates
from the EKF are used within the parameter estimation process without any post
processing.

3.3 Time-domain nonlinear grey-box identification
The MATLAB System Identification Toolbox (ver. R2016b) was used for nonlinear
grey-box estimation. The closed-loop ϕCL and open-loop ϕOL model parameters
were identified in a decoupled manner, focusing the parameters to their respective
dynamics and outputs in an attempt to avoid any erroneous cost minimization in
the optimization across model structures. Further, decoupling the identifications
allows any future change in low-level attitude control parameters only to require
adapting the closed-loop attitude response model, while the quasi-steady open-loop
model should not change with respect to slightly varying attitude stabilization.
The grey-box structure for the closed-loop attitude dynamics contains states

xCL =
[
ΘT ,ωT

]T , inputs uCL =
[
ΘT

ref, vA, γ
]T , and outputs for error minimiza-

tion yCL =
[
ΘT ,ωT

]T , and dynamic equations (7.1). Note the airspeed and flight
path angles are input from the logged data, and not propagated within the model
structure.
The grey-box structure for the open-loop dynamics contains states xOL =

[vA, γ, δT ]T , dynamic equations (7.2), inputs uOL =
[
ΘT , uT

]T , and outputs
yOL = [vA, γ, ax, az ]T , where ax and az are the x-body and z-body axis accelera-
tions, related to the internal model states as:(

ax
az

)
=

(
cosα sinα
sinα −cosα

)(
(T cosα−D) /m
(T sinα+ L) /m

)
(7.5)

The minimization of body acceleration errors during parameter estimation proved
especially useful. Prior to the optimization process itself, the same acceleration
measurements could be used to fit an initial guess of the lift and drag curves. Such
a plot can be seen in Fig. 7.4.

3.4 Model validation
After optimizing the model parameter estimates of the two model structures, the
models were validated on data not used within the training. Figures 7.5 and 7.6
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Figure 7.4: Static aerodynamic and power curves: lift coefficient (left), drag
coefficient (center), power (right). Acceleration data with corresponding body
rates below 1 ° s−1 are displayed. Note this “sanity check" is important during the
identification and model selection process, as the output-error method can easily
misrepresent the underlying physics, despite obtaining a low-cost fit.

show a representative validation of a coupled pitching and rolling maneuver for the
closed- and open-loop dynamics, respectively. All outputs are well matched to the
flight data. Table 7.1 displays the average Root Mean Squared Error (RMSE) for
each output signal over all validation sets.

Table 7.1: Average Root Mean Squared Error (RMSE) over all validation sets.
yCL yOL

Signal RMSE Unit Signal RMSE Unit
φ 1.610 ° vA 0.424 m s−1

θ 0.921 ° γ 1.680 °
p 5.140 ° s−1 ax 0.217 m s−2

q 3.390 ° s−1 az 0.660 m s−2

r 2.650 ° s−1

As both identified models are to be propagated simultaneously within the horizon
of the MPC, a subset of free-form flight data was used to test the fully integrated
model in open-loop simulation. Figures 7.7 and 7.8 show a comparison of one
such simulation against over 1 min of flight data. Despite not being trained or
validated with the combined model, the results show good tracking - validating
the decoupled (open-loop vs. closed-loop) modeling assumptions made within the
identification. Notably, the largest errors within the experiment were seen during
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extended maximum roll angle commands while simultaneously flying at airspeeds
exceeding the identified state-space – suggesting, in particular, that the model
structure for q and r dynamics may begin to break down near the boundary of
the identified flight envelope. For more aggressive flight with higher roll angles or
airspeeds, these unmodeled effects would need further consideration.
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Figure 7.5: Inputs (left) and outputs (right) for a coupled validation experiment
on the closed-loop attitude dynamics. (blue is the input signal, red is the simulated
output)
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4 Control Formulation

In this section we formulate a high-level Nonlinear Model Predictive Controller
(NMPC) for multi-objective guidance of the UAV, embedding the path following
problem for optimization within the horizon, stabilizing airspeed, and considering
soft constraints on the angle of attack.

4.1 Path following
Dubins Aircraft segments (lines and arcs in 3D) [3] can be used to describe the
majority of desired flight maneuvers in a typical fixed-wing UAV mission. Further,
using simple paths such as arcs and lines allows spatially defined path following,
independent of time (or consequently speed), a useful quality when only proximity
to the track is desired and winds can significantly change the ground velocity. For
the remainder of the section, we will consider Dubins segments as path inputs to the
high-level controller, though it should be noted that the path objective formulation
is not limited to these; e.g. within this work we have also incorporated a special
case of the Dubins arc, the common unlimited loiter circle.

Path geometry

A minimum set of path parameters are required to define each time independent
segment type as follows:

• Dubins line: P ∈ line = [b, χP ,ΓP ]

• Dubins arc: P ∈ arc = [c,±R,χP ,ΓP ]

• Loiter unlim.: P ∈ loit = [c,±R]

where b is the terminal point on a Dubins line, c is the center point of a Dubins
arc (or loiter circle) at the terminal altitude, ±R is the arc (or loiter) radius with
sign indicating clockwise (positive) or counter-clockwise (negative) direction, χP
is the exit course for a Dubins arc or line, and ΓP is the inertial-frame elevation
angle of a Dubins arc or line. Figure 7.9 describes the geometry.

To date, fixed-wing guidance logic for tracking helix-type paths has largely been
limited to ‘pose-in-time’-based definitions (e.g. [3, 21]), i.e. desired positions and
orientations are prescribed in time from initially starting to follow a given path
segment. As the aircraft ground speed may change significantly over time, e.g.
due to wind, we desire a time-independent formulation, defined only by spatial
proximity to the path. A unique spatially defined solution for the closest point on a
line in three-dimensions can be analytically calculated. However, to avoid multiple
solutions or the necessity of numerical methods when finding the closest point on
the 3D arc paths, we define an approximate of the closest point by decoupling the
problem into lateral-directional and longitudinal planes.
We first consider the closest point in the lateral-directional plane to a circle

with radius |R| (with unique spatially defined solution, except on the center point),

121



Paper V: Nonlinear Model Predictive Guidance . . .

Figure 7.9: Lateral-directional (left) and longitudinal (right) arc path geometry.

and subsequently choosing the nearest arc ‘leg’ (assuming an infinite helix in the
direction opposite the sign of the elevation angle). In (7.6), the d component of the
closest point on the path pd is calculated via summation of the terminal altitude
bd, the altitude deviation ∆dχ due to the angular distance ∆χ from the exit point,
and the altitude deviation ∆dk corresponding rounded k number of arc ‘legs’ away
from the terminal point; see Fig. 7.9.

∆dχ = ∆χ|R| tan ΓP

∆dk = round

(
d−(bd+∆dχ)
2π|R| tan ΓP

)
2π|R| tan ΓP

pd = bd + ∆dχ + ∆dk

(7.6)

Lateral-directional guidance

As fixed-wing aircraft behave dissimilarity in lateral-directional and longitudinal
states, we also decouple the guidance objectives. The lateral track-error is defined:

elat = t̄Pn (pe − re)− t̄Pe (pn − rn) (7.7)

where t̄Pn =
tPn

‖[tPn ,tPe ]‖
and t̄Pe =

tPe
‖[tPn ,tPe ]‖

, for ‖ [tPn , tPe ] ‖ 6= 0. The unit

path tangent t̂P is defined from the current path parameters Pcur, specifically χP
and ΓP .

One approach to the path following problem is to minimize the track-error itself
along with the error between the aircraft course angle, inertial flight path angle, and
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the path tangent, e.g. χ−χP , as designed in the 2D case presented in our previous
work [82], as well as other works [38, 39, 86]. However, the NMPC’s internal
model also includes airspeed in an open-loop formulation, requiring simultaneous
reference tracking. This dichotomy was found to present a challenge in properly
defining a time-independent and velocity independent path following objective,
as large track-errors would induce increased airspeed commands in an attempt
to quickly reduce the larger cost in the shortest time within the horizon. Rather
than attempt to define a complicated prioritized approach to weighting these two
competing objectives, we instead embed unified, speed independent guidance logic,
incorporating both directional and position errors into one lateral-directional and
one longitudinal error term.

Augmentation of the NMPC internal model to include the guidance formulation
has also previously been explored [21, 80, 81]; however, in these approaches, the
analytic guidance law was used to generate attitude references within the control
horizon, commands we wish our high-level NMPC to allocate itself. We therefore
propose in this work to leave the control allocation open-ended for the nonlinear
optimization to solve in real-time, while providing the NMPC with an error angle
in the objective which, when minimized, results in convergence to the path.

The lateral-directional guidance error is formulated as the error angle ηlat from a
look-ahead (or line-of-sight) guidance approach, commonly used in high-level lateral-
directional position control for fixed-wing UAVs, see (7.8) and Fig. 7.10. Specifically
we formulate our look-ahead vector l̂ in a similar manner to the formulation found
in [10], though it should be noted that several similar formulations exist, e.g.
[11, 75].

l̂ =

(
ln
le

)
=

((
1− θllat

)
t̄Pn + θllat ēn(

1− θllat
)
t̄Pe + θllat ēe

)
(7.8)

where ēn = en
‖[en,ee]‖ and ēe = ee

‖[en,ee]‖ , for ‖en, ee‖ 6= 0, and e = p− r. θllat is a
mapping function for the lateral-directional track-error, equal to 1 at the track-error
boundary eblat and 0 when elat = 0. We choose a quadratic shape for θllat such
that beyond the track-error boundary a perpendicular approach to the path is
demanded, and at the track-error boundary, the commanded direction begins to
transition smoothly towards the unit tangent vector on the path:

θllat = −e′lat
(
e′lat − 2

)
(7.9)

where the normalized and saturated lateral-directional track-error is defined:

e′lat = sat
(
|elat|/eblat , 0, 1

)
(7.10)

and sat (·,min,max) is a saturation function. Borrowing a similar effect from
the developments in [11], the track-error boundary is defined in an adaptive way
with respect to the current ground speed eblat = ‖vGlat‖Tblat , for ‖vGlat‖ 6= 0,
where Tblat is a tuning constant, varying the steepness of the look-ahead vector
mapping on approach to the path, and vGlat = [vGn , vGe ]T . In this work, we limit
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Figure 7.10: Lateral-directional guidance logic.

the minimum track error bound eblat with a smooth piecewise relationship to a
minimum ground speed, arbitrarily set to 1 m s−1, see (7.11).

eblat =

{
‖vGlat‖Tblat ‖vGlat‖ > 1
1
2
Tblat

(
1 + ‖vGlat‖2

)
else

(7.11)

The final guidance objective is defined as the error angle between the aircraft
ground speed vector and the look-ahead vector.

ηlat = atan2 (le, ln)− atan2 (ė, ṅ) (7.12)

where atan2 is the four quadrant arctangent operator, and ηlat should be wrapped
to remain within ±π. Note this discrete switch at 180° entails an instability point
within the guidance formulation when propagated within the horizon; e.g., in the
case that the aircraft is traveling on the track in the opposite of the desired direction.
Careful initialization of the NMPC horizon should be considered to ensure operation
outside of some range of this condition. A hard end term constraint bounding
the aircraft to find trajectories leading away from this zone would also be advised,
however, at this point, the ACADO framework [30] (used for auto-generation of
optimized C code for real time control in this paper) does not support externally
defined constraints. In lieu of this, some handling of this case outside of the NMPC
(e.g. shifting the track away when close to this configuration) is possible.

One further consideration is the limitation of maintaining an airspeed greater
than the wind speed. While the present guidance formulation will not fall into a
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singularity, the resulting guidance commands may be erroneous (e.g. when the
atan2 function on ground speed is very near zero on both input arguments), and
this work does not further consider their influence on the NMPC’s corresponding
objective cost, apart from the insight that some objective weight retuning was
found to required. However, one may look to appropriate guidance enhancements
for these particular conditions in, e.g., the formulation presented in [19].

Longitudinal guidance

We approach longitudinal guidance in a slightly different manner than that of the
lateral-directional, as longitudinal fixed-wing states do not have the full range of
their counterparts in the 2D, horizontal plane, and are non-symmetric in climbing
and sinking flight performance. We define the desired (on-track) vertical velocity
ḋP = ‖vG‖tPd ∈

(
ḋclmb, ḋsink

)
corresponding to the path elevation and current

ground speed, further bounded by the maximum climb rate ḋclmb and sink rate ḋsink.
Depending on the sign and magnitude of the longitudinal track-error elon = pd− rd,
a vertical velocity setpoint ḋsp is modulated in an asymmetric manner between the
bounds of maximum sinking and climbing using a quadratic look-ahead mapping
function similarly defined to that within the lateral guidance, Sec. 4.1.

ḋsp = ∆ḋθllon + ḋP (7.13)

with look-ahead mapping θllon = −e′lon
(
e′lon − 2

)
and normalized track-error

e′lon = sat
(
|elon/eblon |, 0, 1

)
, and track-error boundary defined similar to the lateral-

directional:

eblon =

{
Tblon |∆ḋ| |∆ḋ| > 1
1
2
Tblon

(
1 + ∆ḋ

2
)

else
(7.14)

with ∆ḋ defined for climbing or sinking:

∆ḋ =

{
∆ḋclmb elon < 0

∆ḋsink else
(7.15)

where ∆ḋclmb = −ḋclmb − ḋP and ∆ḋsink = ḋsink − ḋP .
The resultant guidance error term is formulated as the vertical velocity offset,

normalized by the range of climbing and sinking rates.

ηlon =
ḋsp−ḋ

ḋclmb+ḋsink
(7.16)

where ηlon, though not a true angular error as in the lateral-directional case, is
then mostly defined between [−1, 1] (except with large vertical velocity deviations).
Another purpose of the present formulation is to allow for high horizontal wind
scenarios where we may still be able to climb or sink to a desired altitude, despite
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flying at close to zero horizontal ground speed, something an angle based guidance
objective would not readily handle.

Switching conditions

Terminal conditions for Dubins arc segments require the aircraft to be within some
acceptance radius Racpt of the segment terminal point b (proximity), traveling
within an acceptance angle ηacpt of the exit course χP (bearing), and beyond the
terminal point b in the path axis (travel). Only the travel condition is set for line
segments to avoid runaway behavior when the other conditions are missed due to
e.g. the path being commanded while the aircraft is not already close to the track
and correct orientation. No terminal condition is set for unlimited loiter circles.
Switching conditions are summarized in (7.17), and shown graphically in Fig. 7.9.

‖r− b‖ < Racpt (proximity)
vG · t̂B > cos ηacpt (bearing)
(r− b) · t̂B > 0 (travel)

(7.17)

where t̂B is the unit tangent at the terminal point b of the current path Pcur . Note
for Dubins arcs, b must be calculated from the arc center c and exit course χP .

As in [37, 82], a switching state xsw is defined and augmented to the model, with
dynamic shown in (7.18). Then, xsw defines the desired path in the queue to follow
internally within the horizon.

ẋsw =

{
ρ terminal conditions met ‖ xsw > threshold
0 else

(7.18)

where ρ is an arbitrary constant.

4.2 Optimal control problem

We use the ACADO Toolkit [30] for the generation of a fast C code based nonlinear
solver and implicit Runge-Kutta integration scheme. A direct multiple shooting
technique is used to solve the optimal control problem (OCP), where dynamics,
control action, and inequality constraints are discretized over a time grid of a given
horizon length N . A boundary value problem is solved within each interval and
additional continuity constraints are imposed. Sequential Quadratic Programming
(SQP) is used to solve the individual QPs, using the active set method implemented

126



4 Control Formulation

in the qpOASES4 solver. The OCP takes the continuous time form:

min
x,u

∫ T

t=0

(
(y(t)− yref(t))

T Qy (y(t)− yref(t))

+ (z(t)− zref(t))
T Rz (z(t)− zref(t))

)
dt

+ (y(T )− yref(T ))T P (y(T )− yref(T ))

subject to ẋ = f(x,u),
u(t) ∈ U,
x(0) = x (t0)

(7.19)

where control vector u = [uT , φref, θref]
T and state vector x =

[
rT ,vTV ,Θ

T ,ωT , δT , xsw
]T .

Qy, Rz , and P are state, control, and end-term non-negative diagonal weighting
matrices. State and control-dependent output vectors are compiled from path
following objectives, airspeed stabilization, rate damping, and soft constraints:

y =
[
ηT , vA,ω

T , αsoft
]T

z =
[
δ̇T ,u

T
]T (7.20)

where η = [ηlat, ηlon]T , and αsoft is a soft constraint on the angle of attack (to be
defined in Sec. 4.2).

Feed-forward terms

Note that penalization of the attitude references and throttle input is necessary to
avoid bang-bang control behavior. The selection of trim values, however, is impor-
tant to avoid lowered performance in other objectives. Constant trim values (for
level-cruise flight) are used as control output references zref =

[
0, uTtrim , 0, θtrim

]
.

However, it was found that a feed-forward calculation for an approximate roll angle
reference φref improves path following objective performance, as roll angle trims
for turning flight have large offsets from level flight. The feed-forward term is
calculated and subtracted from the roll angle reference φref throughout the horizon
for the final output zφref = φref − φff:

φff =

tan−1

(
‖vGlat‖

2

gR

)
1+cos(πe′lat)

2
Pcur ∈ arc, loit

0 Pcur ∈ line
(7.21)

Note φff is not a commanded value to be explicitly tracked, but only gives
guidance when near the track (via the multiplied smooth trig function as a function
of the normalized lateral track error e′lat), keeping the weighted roll trim closer to

4http://www.qpOASES.org/
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the region of the optimal solution.

Soft constraints

As the NMPC is also required to stabilize the open-loop dynamics of the vehicle,
inappropriate commands could lead to a stall of the aircraft. To mitigate the
potential for stall, we include a soft constraint on the angle of attack α, keeping
zero cost within the “safe" range, and quadratically increasing cost outside of these
minimum α− and maximum α+ bounds. A transition zone is defined by ∆α to
allow tuning of the constraint’s steepness.

αsoft =



(
α−(α+−∆α)

∆α

)2

α > α+

0 α+ ≥ α > α−(
α−(α−+∆α)

∆α

)2

else

(7.22)

We have chosen soft constraints over hard constraints for several reasons. Namely,
as the NMPC is operating on the high-level state-space, angle of attack rates and
other fast modes are not modeled and likely not to be regulated well using only
the attitude commands at its disposal (stall prevention is traditionally a low-level
control problem). We thus only consider future prevention through foresight into
the horizon, and allow momentary violations of the soft bounds during abrupt
events like an actuator failure, strong gust, or poor initialization of the controller,
instances where a hard constraint could result in either no control solution or more
iteration steps leaving the low-level controller without commands for some time.
Note that other works have incorporated similar soft constraints within the MPC
framework at the same time combining them with hard constraints [36], in the cited
example for the purpose of collision avoidance. A similar option could be explored
for stall prevention in future work.

5 Flight Experiments

As the primary focus of this paper was the experimental implementation and
validation of the proposed guidance methods, we present several indicative flight
experiments, providing insights gained from the field experience, and omit simulation
studies for brevity.

5.1 Hardware setup
Low-level attitude stabilization was run at 50 Hz on the Pixhawk, state estimates
from the EKF were transferred via UART connection at 40 Hz over MAVLink/MAVROS
to an on-board computer running Robotic Operating System (ROS), where a wrap-
per node iterated the NMPC solver at a specified fixed time interval Titer. As
future applications of NMPC based guidance approaches may include objectives
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Figure 7.11: ROS node bench-tested on an Intel® UP board (Quad Core, 1.92 GHz
CPU, 4 GB RAM) in HIL configuration with horizon step size Tstep=0.1 s. State
measurement updates were randomized and a 3D Dubins arc segment was input to
maximize computational load. Approx. 1 min of data collected for each configura-
tion. (left) Objective weights for the normalized error outputs during each flight
experiment. (right)

such as high speed obstacle avoidance, and noting that fixed-wing platforms require
some time/space to maneuver, it is important to examine achievable real-time
horizon lengths for experimentation. Hardware-in-the-loop (HIL) bench tests were
performed for this purpose, see box plot results in Fig. 7.11. Here, computation
time is defined as the sum of all operations conducted within the ROS node (solve
time, array allocation, waypoint management, etc.) for one iteration.

5.2 Experimental results
Objective weighting was kept mostly constant throughout all experiments, save
for some minor tuning adjustments, see Fig. 7.11 for a comparison. Note that the
output error signals yref − y and zref − z were normalized by the expected error
ranges for nominal flight in an attempt to improve intuition on relative weighting
between signals. Guidance parameters were fixed throughout all experiments, see
Table 7.2. Further insight into the specific weighting is elaborated within each
experiments subsection.

Helix following

To push the boundaries of the control horizon in a real world setting, a horizon
length of N = 70 was used with Tstep=0.1 s, corresponding to a 7 s horizon. Control
solutions were iterated at Titer=0.1 s, or 10 Hz.
Figures 7.12 and 7.13 show path following and airspeed stabilization on steep

ascending and descending Dubins arcs. The arc radii were chosen to be just above
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Table 7.2: Guidance parameters used for flight experiments.
Param Value Unit Param Value Unit

∆α 2 ° Tblat 1 s
α− -3 ° Tblon 1 s

α+ 8 ° ḋclimb 3.5 m s−1

Racpt 30 m ḋsink 1.5 m s−1

ηacpt 15 °

the physical limit for the given roll angle constraints (±30°) and commanded flight
speed (13.5 m s−1). Final horizontal track-errors are kept within ±2 m once settled
to the path, and the vertical track-errors mostly regulated below ±0.5 m.
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Figure 7.12: Techpod tracks a steep ascending (8° incline) Dubins arc with a 35 m
radius, then summits on a large constant altitude arc before descending on another
35 m radius arc (3° glide).
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Figure 7.13: Guidance/track errors and air-, wind, and ground speeds during
helix testing.

More extensive flight testing on these tight and steep helix paths, especially
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when flying in wind, showed that appropriate relative tuning of the weights for
the lateral-directional and longitudinal guidance errors is important. Less relative
weighting on the longitudinal path objective, at times, allowed significant altitude
deviations on down-wind portions of the helix; though, once turning back into the
wind the ground speed was lowered and the altitude error was again regulated. The
altitude deviations on the down-wind leg could become significant enough that the
midpoint between helix legs was passed, causing a discrete switch to the lower leg
within the horizon (recall the position-based helix logic in Sec. 4.1). While the
latter point was later solved with a simple “arc length traveled" logic to refuse
previous legs in each horizon, the prior required some investigation and subsequent
adjustment to the objective weighting. Convergence to this local minimum was
in part due to the greater roll angle requirements for tracking the arc down-wind
(faster ground speed), which reduced the vertical component of lift available for
the steep climb and thus increased the required thrust and/or angle of attack
(controlled with pitch), which would, in turn, cause greater deviations of these
values from their constant objective references. This, coupled with the higher weight
on lateral-directional track error, induced lessened prioritization of the altitude
error within the optimization. Higher weighting on the longitudinal path objective
(see 7.11) resulted in the improved performance seen in Fig. 7.12.

Connected Dubins segments

Figures 7.14 and 7.15 show path following of connected Dubins lines and arcs. As
in the previous experiment, tight radii were commanded on each arc segment, and
newly, the incorporation of line segments with 90° corners. A 7 s horizon (length
N = 70, Tstep=0.1 s) with iteration rate 10 Hz was again used.
Note despite the ∼5 m s−1 wind and tight arcs, the horizontal track-errors are

kept within ±1 m once settled to a given set of smoothly connected path segments
(see the left leg and top curvature of the A in ASL, Fig. 7.14) and the vertical track-
errors mostly regulated below ±0.5 m. Once the terminal conditions are met, the
planned trajectory considers not only the current path, but also the next, allowing
reduced tracking performance in the down-wind leg (also considering body-rate
penalties) in order to reduce overshoot after the 90° turn onto the next.

One may notice the slightly noisy attitude and throttle reference signals. Though
in the present cases not having significant detrimental effect on the aircraft perfor-
mance, it is worth noting the origin is primarily from the unfiltered (aside from a
subtracted estimated bias) angular rate feedback to the NMPC. Future considera-
tion of some feedback or control output filtering may be warranted for particular
signals, though care should be taken not to add undesired delays on the controller
response.

Motor failure

To explore potential fault tolerance of the designed guidance algorithm, we simulate
a motor outage during a flight experiment. This tests the NMPC’s capability of
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Figure 7.14: Techpod tracks connected Dubins arcs and lines in ca. 5 m s−1 winds.
The red NMPC horizons showcase the planned trajectory converging to the straight
segments before the horizon reaches the terminal conditions for switching to the
next segment.

reconfiguring the control allocation for the multi-objective problem in real-time.
We assume detection of a motor failure, generally (though perhaps not the exact
type of failure), can be accomplished by monitoring the expected current draw
(with respect to the throttle input) and comparing to a threshold value, a feature
presently integrated in the custom flight software running on the Techpod UAV.
In this experiment, we change the horizon length to N = 40, again with

Tstep=0.1 s, a 4 s horizon. However, with the reduced computational load (see
Fig. 7.11) we are able to increase the iteration rate to 20 Hz (or Titer=0.05 s). A
higher iteration rate allows faster feedback for the quicker dynamics expected to
need mitigation in a motor failure situation.

Figures 7.16 and 7.17 show the Techpod UAV ascending to a loiter circle, when
the motor is cut at t=15.5 s. We simultaneously apply an arbitrarily large weight
on the throttle input (e.g. 1e6). This causes the NMPC to reallocate the remaining
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control signals, in this case, immediately pitching down and stabilizing a glide
at the commanded airspeed. Notice that the lateral-directional track-error still
remains below ±1 m, as the optimization is able to maintain this particular tracking
objective. A brief, negative spike in the angle of attack α is seen at the time of the
failure, but this is quickly returned to nominal values, and well within the bounds
of the soft constraints (stopping just before the buffer zone). At t=34 s, the motor
is reactivated, and the NMPC is similarly able to quickly reconfigure the control
allocation and resume ascending to the loiter circle. Despite the almost halving of
the NMPC horizon, and the doubling of the iteration rate, no major retuning of the
objective weights and parameters was necessary to maintain good performance.

6 Conclusions & Future Work

In this work, we presented an approach for modeling and identification of the control
augmented dynamics of a small fixed-wing UAV with a typical OTS autopilot in the
loop, and further, utilized these dynamics within the internal model in the design
of a high-level NMPC for simultaneous airspeed stabilization, 3D path following,
and handling of soft angle of attack constraints. The identified model structure
demonstrated good predictive qualities, as shown with comparisons of open-loop
simulation times on the order of tens of seconds, with respect to flight data. The
designed high-level NMPC showed good performance for the multi-objective problem
in a variety of experimental scenarios; in particular showcasing the benefit of explicit
consideration of wind within the formulation and sufficiently long horizon times.

In future work, considering both airspeed and attitude within the low-level control
loop would be advantageous, allowing a simplification of the control augmented
model structure and, further, the possibility of increased horizon lengths and/or
additional objectives such as obstacle avoidance and/or terrain constraints on
autonomous landing.

134



6 Conclusions & Future Work

−10

−5

0

5

10

Tr
ac

k-
er

ro
r

[m
] elat

elon

0
0.2
0.4
0.6
0.8
1

T
hr

ot
tle

[%
]

−20

0

20

A
tt

itu
de

[◦
]

φref
φ
θref
θ

8

10

12

14

16

Sp
ee

d
[m

/s
]

Airsp. ref.
Airsp.
Ground sp.

0 10 20 30 40 50 60 70 80
−180

−160

−140

−120

−100

Time [s]

W
in

d
di

r.
[◦

]

−2
0
2
4
6

W
in

d
sp

.
[m

/s
]

Wind horiz.
Wind Z

Figure 7.15: Track-errors and control inputs and air-, wind, and ground speeds
during Dubins segment tracking in wind.

135



Paper V: Nonlinear Model Predictive Guidance . . .

−50 0 50
100

200
300
100

110

120

130

Easting [m]Northing [m]

H
ei

gh
t

[m
]

Flight experiment: motor failure

Path
Position
Pos. (motor fail)

Figure 7.16: Techpod experiences a mock- motor failure during ascent to a loiter
path.

136



6 Conclusions & Future Work

−2

−1

0

1

2

e l
at

[m
]

−20

0

20

A
tt

itu
de

[◦
]

φref
φ
θref
θ

0
0.2
0.4
0.6
0.8
1

T
hr

ot
tle

[%
]

0 5 10 15 20 25 30 35 40 45 50

0

5

Time [s]

A
oA

[◦
]

α+
α−
α

10

12

14

16

Sp
ee

d
[m

/s
]

Airsp. ref.
Airsp.
Ground sp.

Figure 7.17: Lateral-directional track-error and control inputs (left) and airspeed,
ground speed, and angle of attack (right) during a mock- motor failure.

137





PaperVI
An Outlook on Environment-Aware Local

Re-Planning for Safe Near-Terrain
Operation of Fixed-wing UAVs

Thomas Stastny, Timo Hinzmann, and David Rohr

Abstract
Future fixed-wing and/or hybrid platforms, operating autonomously beyond
the horizon, near terrain and disturbed by variable, turbulent wind fields,
will need more than global, open loop motion plans to safely execute their
missions. Handling all real-time variables not foreseen by the original
planner will require direct and generalized feedback of real-time, on-board
environmental awareness within the control loop. In this brief, we showcase
some ongoing work in its preliminary stages of development towards utilizing
the developed control structures in Papers IV and V, reconceptualizing
the work as an environment-aware local re-planner. We first present some
design trade-offs particular to long horizon Nonlinear Model Predictive
Controllers (NMPCs), leading to some enhancements to our previous control
structure. The brief then turns to environmental perception, where vision-
based elevation mapping is utilized to provide a generalized 2.5D world
representation to the aircraft. The map is bilinearly interpolated for height
feedback, and we design an efficient ray casting approach for detection
of forward (line of flight) and lateral occlusions. The occlusions are used
to construct novel “relative” Euclidean Signed Distance Fields (RESDFs),
which are a function of the relative velocity between the vehicle and
obstacle. The RESDFs are transformed into optimizable soft constraints
for the objective function of the NMPC. A preliminary example of the full
system acting to avoid an obstructing hillside is demonstrated in hardware-
in-the-loop (HITL) simulation.
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1 Introduction

In Papers IV and V, fixed-wing implementations of high-level model predictive guid-
ance were developed and demonstrated in flight experiments for three-dimensional
path segment following. Paper V in particular showed how simultaneous airspeed
control, angle of attack constraints, and even a limited example of motor failure
could be encapsulated within the same controller. A control augmented model
formulation was used which we were able to demonstrate as a sufficiently predictive
model for longer control horizons, and easily identifiable from flight data.
The results from Papers IV and V also indicate what a predictive optimization

based control approach can potentially provide over more deterministic controllers;
e.g. in Paper V, how the NMPC utilized it’s long predictive horizon to “locally”
adapt it’s trajectory around a 90° path change in strong winds, increasing the
instantaneous track error while finding a state trajectory which more globally
reduced track error along the full transfer. These types of insights, while on their
own may not merit full time employment of such control approaches for simple
tasks, forecast the potential of handling the more advanced control objectives that
will inevitably be required of autonomous UAVs in the coming future.

In this brief, we aim to showcase where this research is headed, outlining some
of our ongoing work in its preliminary stages of development which illuminates
our original motivations in developing the ability to deploy long-horizon model
predictive controllers on fixed-wing UAVs: Specifically, our aim is to utilize the
developed control framework and reconceptualize it as an environment-aware
local re-planner.
Our primary hypothesis in this outlook is that future fixed-wing and/or hybrid

platforms, operating autonomously beyond the horizon, near terrain and disturbed
by variable, turbulent wind fields, whether for close surveying, payload drop and
recovery, or even physical interaction with the environment, will need more than
global, open loop motion plans to safely execute their missions. Handling all real-
time variables not foreseen by the original planner will require direct and generalized
feedback of real-time, on-board environmental awareness within the control loop.
We note that this functionality should be seen as a complement, not necessarily a
replacement, for existing motion planners.

1.1 Related Work
While we discussed estimation and guidance level control solutions with wind
awareness throughout Part A, here our primary environmental concern will be
terrain.

Tackling terrain avoidance (when it is indeed our aim not to interact with the
environment) gives three main challenges:

1. The ability to sense the terrain with enough distance that our (relatively)
high speed vehicles have time to react and avoid.

2. A method of compressing map information efficiently for controller compre-
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hension.

3. Fast motion planning which respects vehicle dynamics and constraints.

The following subsections detail some of the most recent literature related to the
challenges listed above, with a particular focus on small fixed-wing UAVs.

Sensing and Mapping

A large amount of work has been conducted on real-time mapping in the context of
Micro Aerial Vehicles (MAVs), particularly multi-copter platforms. Widely used
mapping frameworks populate 3D occupancy grids such as an octomap [29] which
may be used by planning algorithms for collision checking. More recently the voxblox
[63] and FIESTA [25] frameworks were released, proposing efficient methods for
incrementally building Euclidean Signed Distance Fields (ESDFs) which can more
readily provide collision cost and gradient information needed for e.g. trajectory
optimization based motion planners. For instance, the voxblox pipeline was used
on-board multi-copters for continuous time reactive re-planning in [62] and safe
outdoor exploration in a forest in [64].
Off the shelf rigid stereo rigs or depth cameras have shown to be sufficient for

populating occupancy grids and achieving autonomous operation of many ground
robots and MAVs. However, as detailed in [27] and [28], similar off the shelf solutions
applied to fast moving (relative to multi-copters) fixed-wing vehicles fail for several
reasons. On the vision side, the primary deficit of small baselines and/or current
depth cameras is low range and depth uncertainty. E.g. a 10 m range on an Intel
RealSense1 is nowhere near functional for an aircraft flying above 15 m s−1.

Other sensing possibilities include scanning lasers (popular on large autonomous
helicopters, see e.g. [76], and ground vehicles) or radar. The former being heavy
and expensive, or when in smaller scale (for example as outfitted on an indoor
fixed-wing in [7]), again impeded by range, and the latter not yet miniaturized for
small UAV use.
Longer range (on the order of 60 m) single point lidars are often used by fixed-

wing vehicles for height above ground (HAG) measurements once entering a landing
approach. An example of using several point lidars pointed in various directions
for terrain avoidance was shown on a small fixed-wing UAV flying through a
canyon in [23]. However, this approach has limited applicability in more complex
environments where much broader knowledge of the terrain is required, and even
this 60 m may not be enough for a fast flying plane to avoid an obstacle.

To our best knowledge, the only work to date solving the problem of depth and
range for fast fixed-wing vision solutions was tackled in [27] and [28], where wide
baselines (up to 3 m from wing tip to wing tip) increased depth perception up to
the order of 100 m-200 m, and a “flexible” baseline estimation framework mitigates
errors from the inherent non-rigidity of the aircraft’s wings in flight. Within [28],
the approach was tested in flight experiments on our own Techpod UAV.

1https://click.intel.com/intelr-realsensetm-depth-camera-d435.html
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Obstacle Avoidance

Motion planning, and more specifically obstacle avoidance, is an enormously studied
topic in MAV research. An entire book could be written on all the competing
approaches for various platform types, sizes, and applications (and several have
been). However, we will limit our focus here to specifically recent works pertaining
to fixed-wing avoidance, attempting mostly to single out those works with flight
experimentation to aid our understanding of this real-world challenge.
Here we need to consider the scale of the avoidance problem we want to solve.

If the desired stand off distance from any given terrain is large enough that even
vision solutions with very large depth uncertainty at far ranges would detect a
large previously unknown structure some 500 m-1 km away, the a simple solution
would be to move position waypoints out of the way, e.g. set a stop and loiter
point, and then wait for a global path planner to take some seconds and solve for
a new plan with the updated information. This condition is quite common for
high-flying fixed-wing missions, and there are a variety of such global planners
existing. For example, see [59], where wind is also predicted online and considered
in the 3D path planner. [70] provides another example where a digital elevation
model (DEM) is provided a priori; loiter paths are used to climb to safer altitudes
when the employed search algorithm (independently surveying) runs up against
terrain in the map.
However, as introduced above, our aim here is near terrain operation, i.e. we

actually want to get as close as possible without crashing. Looking to fixed-wing
literature for similar work, the lion’s share of implementations appear to favor fast
sampling and/or single selection of maneuvers from trajectory libraries, checking
each potential trajectory for collisions with whatever map is preloaded or estimated
on-board.

In [2], a “pushbroom stereo” vision setup approached a reduction in block matching
processing requirements by choosing a single distance at which to search for matches,
storing obstacles as the vehicle progresses forward. A small library of manually
demonstrated maneuvers, e.g. veer left, climb, fly straight, were programmed into
a selection module and a 12-state time varying LQR controller was used to track
the pre-determined state references. Their experimental results were impressive,
however the obstacle detection range was still limited to ca. 10 m and only the
agile nature of their vehicle allowed avoidance. Further the reactive nature of the
obstacle detection algorithm with only the limited “swept up” set of points ahead
to plan through caused further issues in complex obstacle scenarios.

Other notable works include [9] and [43], where a trajectory library is built up of
optimized state trajectories, in the latter work even for partially stalled aerobatic
maneuvers, and feedback control was executed via a simple nonlinear attitude
and thrust response law along the planned trajectories. In [9], a simulated Intel
RealSense was used to generate point clouds at a maximum of 10 m in front of the
aircraft, while in [43], real flight experiments were conducted, no on-board mapping
was performed, and “faked” obstacles were preloaded into the flight computer. Both
works utilized a very agile aerobatic, lightweight airframe with 0.86 m wingspan.
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Another notable mention, though not utilizing trajectory libraries, [7] mounted a
Hokuyo scanning laser to a 2 m wingspan plane and indoors through a parking garage
using a pre-optimized polynomial trajectory from hand picked waypoints. The
feedback control law exploited differential flatness, mapping the Dubins-polynomial
trajectories back to actuator commands.
One commonality among the works listed above is their reliance on their lower-

level controllers to perfectly track the generated trajectories, an assumption that
is clearly not achieved in many of the experimental results shown in the papers.
This can be quite dangerous if no other feedback is provided while executing the
trajectories. The underlying issue here is almost certainly the separation between
the fast kinematics based trajectory planning and underlying unmodeled low-level
response dynamics acting on open loop trajectories. Further, these works use highly
agile and lightweight airframes which are not representative of the majority of
small fixed-wing UAVs in operation. Consideration of these lower-level response
dynamics and tighter flight regime constraints must be taken for a broader class of
less maneuverable vehicles.
Obstacle avoidance with consideration of underlying dynamics, in particular

model predictive control formulations where obstacle information is embedded in
the objective function, has also been studied. In [24], full body control of a fixed-
wing UAV down to actuator level was implemented as a NMPC with trajectory
tracking and avoidance of sphere obstacles (modeled as constraints). The results
were, however, provided in simulation with the same dynamics modeled within
the controller and perfect state information. [36] presents a multi-agent obstacle
avoidance scheme for multi-copters, where spheres around Vicon provided vehicle
positions were similarly the obstacle representation of choice. However here, state
estimation uncertainty on the vehicle position is taken into account to provide a
widening (with horizon time) uncertainty used for scaling up objective costs in
the more uncertain regions of the trajectory. Instead of only hard constraints, the
work further employs potential fields in the objective function applied within some
range of the obstacle to aid the optimizer in finding avoidance trajectories. The
demonstrated flight experiments were quite convincing, and motivate the concept
of embedding of obstacle and lower-level dynamics into a single cost function.

1.2 Approach
In this brief, we will approach the problem of fixed-wing terrain avoidance by
re-evaluating and expanding our previously developed long-horizon NMPC from
Paper V, incorporating generalized terrain feedback to the objective function.

The wide-baseline flexible stereo vision solution from [28] will be used to provide
real-time sensory input of the environment. However, instead of either populating
a 3D occupancy grid and/or utilizing voxblox for ESDF generation, we propose to
fuse our vision measurements to the cells of a “Grid Map” [14], a 2.5D elevation
map representation of the environment. Our rationale being that full 3D maps are
more computationally expensive (and time consuming) to compute, may not be as
scalable for large environments, and fixed-wing vehicles typically do not operate in
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truly 3D environments (e.g. with occlusions overhead), even when operating near
terrain.

With an elevation map being populated on the fly, we propose an efficient means
of interpreting the grid through height look-ups and radial ray casting, constructing
local “relative” ESDFs (RESDFs) which consider not only the distance to terrain
in the map, but also the relative approach velocity of the aircraft, only building
distance fields where the aircraft is currently planning to fly. These new RESDFs
are designed for direct incorporation in the NMPC objective function, providing
a generalized representation of obstacles which may adapt over time and space,
without the need for any further shape abstraction (e.g. planes or spheres) or
tedious collision checking through point clouds along trajectories. To preliminarily
evaluate our approach in a worst case scenario, no global or local planner external
to the NMPC will be used (aside from arbitrarily “poorly” placed path setpoints),
forcing the controller to react and re-plan on its own.
The remainder of this brief is organized as follows: Section 2 details some

afterthoughts and remedies to left-over issues (particular to long-horizon MPC) from
Papers IV and V. Section 3 describes our proposed environmental mapping method
as well as how we can interpret this information within the MPC feedback loop.
Section 4 formally defines the updated controller, followed finally by Hardware-
in-the-Loop (HITL) simulation results in Section 5 and overall conclusions in
Section 6.

2 “Outsmarting” the Optimizer: Safe Objectives for Long
Horizons

First, we need to consider some of the lingering issues found in the previous
works and attempt to resolve them before including more objectives. Specific
reformulations are outlined in the following subsections.

2.1 Challenges for Long Horizon Optimizations
In Paper IV, path following was considered in the objective by finding the closest
point on the path to each node in the horizon, applying the corresponding position
error and directional error (from the path tangent at the closest point on the path)
as quantities to be regulated. While this worked for the 2D case in Paper IV, we
found in Paper V that a similar approach fails once airspeed is included as a state,
as the optimizer now has knowledge that increasing airspeed reduced that track
error faster than maintaining the desired flight speed.
Paper V remedied this issue by encapsulating path following logic into the

objective model, reducing the “path errors” only to directional ones, independent of
the airspeed. This allowed the optimizer to mostly decouple airspeed control and
path following objectives, treating them as parallel requirements.
While the Paper V approach showed excellent tracking performance, we later

observed some issues with the region of attraction of the path following objective.
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An instability point existed when the horizon was initialized opposite the normal
direction to the current track, which caused the aircraft to oscillate and actually
fly away in the opposite direction! This was due to the discrete switch in the path
following objective Jacobians at that point in the state space. Such a point exists
in nearly every path following controller, though the issue normally resolves itself
with any numerical error or in real flights any disturbance that jostles the aircraft
far enough in one direction or the other that the gradient then becomes well defined.
However, as we use long horizons, each horizon node independently may be settling
on one side or the other of this discrete reference switch, at times causing the
resulting summed full horizon path gradient to vary around that mean (opposite
direction), hence our fly away situation.
Another related issue was found with horizon initializations in the opposite

rotational direction from a loiter path, but within close proximity to the track
(within the reference vector field bend). Here the summed costs over the long
horizon entered a local minimum which kept the aircraft flying in the opposite
direction at a stand off distance from the path.

Note these issues similarly may arise with large changes in path reference, effec-
tively acting as a new horizon initialization.
One potential fix would be removing the objective Jacobian feedback from the

directional guidance commands, effectively reducing the node-wise path objective to
a single direction at each point in time, i.e. we run the guidance logic on each node
external to the objective cost, and simply command tracking of those individual
reference directions. As far as the optimizer would then be concerned, there is
only one direction (that will not change with any other state) in which to point
the aircraft. However, even this approach, given our longer horizons, runs into
problems. For one, horizon initialization again is an issue, and we can very well run
into e.g. the same counter rotating stand off local minimum. More critically, when
converging to the path with this formulation, a “slapping” effect, depending on
how aggressively the path following cost is weighted, can develop in the end of the
horizon caused by the optimizer only considering directional errors and taking too
large of steps due to the lack of Jacobian information on how track relative position
influences the guidance commands. De-tuning the path following objective can
reduce this effect, but then of course greatly reduces the path following performance.

Three primary takeaways arise from these observations, specific to long horizon
MPC formulations:

1. Attractive regions for path following logic are not universal when applied in a
node-wise fashion over the horizon.

2. Proper initialization of longer horizons can be challenging, but is critical to
performance and stability.

3. Position dependence in the path following reference Jacobian is necessary for
fast track convergence without negative externalities (e.g. “slapping”).
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2.2 Wind-Aware Lateral-Directional Reference Trajectory
Generation

In this section, we reformulate the path following objectives to a “mobile” trajectory
tracking approach, using a wind-aware trajectory generation module. While the
previous two papers spent quite some efforts to formulate path following objectives
into a time-horizon MPC, we pose here that trajectory tracking is 1) a more natural
approach for the given control structure, and 2) will resolve many of the issues seen
in the previous section. The mobile designation here refers to our aircraft relative
regeneration of the reference trajectories. As aircraft are in constant nonholonomic
motion, we cannot fix a given trajectory from one origin and feed the time dependent
points to the optimizer states, as is commonly done for multi-copters, as this could
lead to run away from the reference points when our vehicle inevitably is disturbed.
Here, we reset the generated trajectory from the current aircraft state at every
optimization iteration step.

While ideally more optimized trajectory libraries or path planners such as those
elaborated in Section 1.1 could be utilized and sampled for our horizon, here we
instead simply propagate our wind-aware guidance logic from Paper III in time
from the aircraft current position and heading, assuming perfect tracking of lateral
acceleration and airspeed reference commands. This provides a horizon of horizontal
(2D) position plat, airspeed vA, and heading ξ references.

The air mass relative commands from our wind-aware guidance moreover add
the ability to consider excess wind conditions such as those discussed in Part A. By
applying the simple roll reference φref allocation used for all controllers in Part A,
we can further provide a feed-forward term to the NMPC.

To avoid purely relying on the tuning of the guidance logic used for propagating
the trajectories, we set path convergence criteria which “snaps” the samples to
the path once below a given cross track error and directional threshold. Euler
propagation is used with a sample time equal to the respective NMPC time step
discretization. An example reference trajectory is shown in Fig. 8.1.

The following outcomes are realized by using this trajectory generation approach:

• Though Jacobian information from the guidance setpoints is no longer embed-
ded in the NMPC objective funtion, defining the additional position objective
for the NMPC to track effectively dampens any possibility for “slapping”.
Note, as we will see in Section 5.2, only a light weight on position error is
necessary.

• We achieve a more ideal approach to the path. Before, the node-wise approach
was in reality treating each horizon node as an individual aircraft, resulting
in the horizon as a whole “drifting” towards the path, rather than forming
the state trajectory we would expect.

• Including both direction and position references generated in sequence makes
us much less prone to the instability condition when the horizon is initialized
in the opposite direction of the track. This will further become important
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when we introduce obstacles and the aircraft will be consistently deviating
away from the path.
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Figure 8.1: Example reference trajectory to a loiter path in excess wind. Notice
the trajectory “snaps” to the path at ca. 7 s, seen by the small kink in the roll
reference, beyond which point all references are sampled directly on the track. The
trajectory enters a terminal condition by ca. 30 s where the wind-aware guidance
logic compensates the excess wind and simultaneously keeps the aircraft on the
path. 10 Hz time discretization is used for a horizon length of 500. In practice
note our horizon lengths are an order of magnitude smaller, only elongated here for
visualization purposes.

2.3 Longitudinal Guidance, as Feedback
While in the last section we externalized the lateral-directional guidance from the
NMPC internal cost model and implemented a reference trajectory generation
approach, this was not necessary for the longitudinal axis, as the range of flight
path angles in which the aircraft operates is vastly smaller (i.e. no possible “turn
arounds”, we are not performing aerobatic maneuvers). With this in mind, each
horizon node is penalized at its previously optimized state against a longitudinal
guidance reference, as done in Paper V.

We use a simple quadratically shaped vector field which steers the vehicle from a
maximum approach vector at a fixed vertical position error boundary until reaching
the path vertical tangent t̂P,d at track error elon = 0. However, different from the
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last paper, we incorporate the vertical wind estimate and formulate an air mass
relative flight path angle setpoint.

The guidance law acts on the fed back longitudinal track error:

elon = pP,d − pd (8.1)

where pP,d is the closest vertical position on the commanded path. To consider
asymmetric climbing and sinking flight performance, we define climbing and sinking
maximum approach flight path angles γclimb and γsink, respectively. To maintain a
continuous and smooth guidance command, some modulation of the track error
boundary is necessary.

e′b,lon =
eb,lon

2

(
1 + | γsink

γclimb
|
)

(8.2)

where

γ̄ =
γsink + γclimb

2
(8.3)

is the midpoint of the flight path setpoint axis, and

γb/2 =
|γsink|+ |γclimb|

2
(8.4)

is the half span. The former two quantities are used for scaling/shifting the control
mapping, as will be shown in the following.

An “on-track” flight path angle γP is determined considering the current ground
speed, airspeed, and vertical wind component:

γP = constrain

(
−vG t̂P,d − vW,d

vA
, γsink, γclimb

)
(8.5)

From here, we can compute a unit track error increment necessary for shifting the
setpoint bounds

∆e′lon =

{√
1 + ∆γ′ − 1 ∆γ′ < 0

1−√1−∆γ′ else
(8.6)

where ∆γ′ =
γ̄ − γP
γb/2

. A normalized (unit) longitudinal track error is now calculated

with vertical wind, non-zero path inclination, and approach angle asymmetries
considered with the unit track error increment.

e′lon = constrain

(
elon

e′b,lon
+ ∆e′lon,−1, 1

)
(8.7)
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Finally, then leading to the flight path angle reference to command the vehicle:

γref =

{
−e′lon

(
e′lon + 2

)
γb/2 + γ̄ e′lon < 0

e′lon
(
e′lon − 2

)
γb/2 + γ̄ else

(8.8)

Several setpoint patterns are displayed against longitudinal track error in Fig. 8.2
for varying winds and path inclinations.
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Figure 8.2: Flight path angle setpoints vs. longitudinal track error for varying
vertical wind speeds and path inclinations ΓP (defined positive up).

Note that we augment the longitudinal guidance to the NMPC internal model
such that the dynamics of the flight path angle setpoint are known (via objective
Jacobians with respect to vehicle states) and we avoid the previously described
“slapping” issues caused by external reference commands.

Implementation Note

For the case of longer horizons (our case) with a more aggressive guidance tuning
(i.e. a small eb,lon), it can happen that the optimizer gets stuck in a local minimum
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near the track where position and flight path errors on the latter end of the horizon
are converged, but the start of the horizon (near the current aircraft position)
settles just beyond the boundary. At and beyond the track error bounds, the
piecewise quadratic guidance law has zero gradient with respect to vertical position,
which causes the boundary value problems for those few multiple shooting nodes to
consider flight path errors with no Jacobian feedback on how a change in vertical
position may improve the cost. The result is then that the optimizer chooses the
greater reduction in total cost settling the latter majority of nodes to the track,
but leaving the beginning nodes with a, relatively, smaller flight path error cost.

In place of the quadratic formulation, asymptotic function such as the arctangent
could potentially be used. However, in the interests of reducing trigonometric
function usage wherever possible (attempting to make any CPU savings we can), a
“quick and dirty” remedy while still using the quadratic formulation is to threshold
the unit track error in the feedback Jacobian, such that there is always a small
position dependence the optimizer can exploit.

2.4 Soft Exponential Huber Constraint Formulation
In Paper V, we formulated soft constraints as heavily weighted objectives. In
particular, a piecewise quadratic formulation was used where, up to some threshold,
no cost was applied to the state (thus no objective penalty), and beyond the
threshold, the soft objective then increased quadratically (quartically in the least
squares cost function). The concept being that soft penalization allows some
foresight for the optimizer to gradually adjust for the bound, rather than running
up against a constraint wall directly and executing aggressive (often oscillatory)
commands to return to permitted state space. Particularly states like the angle of
attack and airspeed for fixed-wing UAVs are good candidates for soft constraints,
as:

1. We often want the optimizer to freely choose at what angle of attack or airspeed
to operate, e.g. given range/endurance or climbing and sinking performance
objectives which have dissimilar and often unknown ideal operating states.

2. These states are very susceptible to violating the constraint (even if briefly),
which can lead to the general hard constraint issues listed above; or, if the
optimizer does not find a feasible solution in the current state, we could be
left for some iteration steps without new controls, possibly leading to a crash.

While the quadratic formulation was shown to work as an angle of attack
constraint in flight tests from Paper V, we observed some small oscillatory behavior
near the threshold at times (though much less than that of hard constraints). This
is due to the discrete step in the objective Jacobian at that boundary.
To address this, we propose an exponential formulation for soft bounds which

effectively goes to zero cost beyond some threshold, but still always maintains some
gradient. However, a purely exponential cost can easily “blow up” the solver if
operating near the constraint. We can take some inspiration from the machine
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learning community to remedy this by formulating a one-sided, exponential version
of the Huber loss [32], which appends a linear cost increase beyond the constraint in
a piecewise fashion. Allowing the further reaches of our long horizon to occasionally
violate some constraints momentarily with more relaxed gradients pushing us back.

We’ll call this soft bound an “exponential Huber constraint”:

σ =

{
1− kσy′ y′ < 0 (linear)
exp (−y′kσ) else (exponential)

(8.9)

where

kσ = log

√
wσ

σ1
(8.10)

and σ1 is the desired value of σ at y′ = 1, assuming a weight of wσ = 1. Note that
the square root seen in (8.10) is present to account for the least squares formulation
this output is processed through with weight wσ applied post-squaring. Input to
the soft constraint is normalized with respect to the constraint wall y0 and a buffer
region ∆y, wherein the exponential ramps up. The normalized input is then

y′ =
y − y0

∆y
(8.11)

where y is the objective on which we are applying the soft constraint.
A graphical representation of the exponential Huber constraint can be seen in

Fig. 8.3.

y0 y0 + y∆

σ1

1

LINEAR

EXPONENTIAL

y

σ

Figure 8.3: Exponential Huber constraint
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Implementation Note

The formulation in (8.9)-(8.10) achieves the desired cost at the constraint and end
of the buffer region, however, is in actuality shaped quadratically in the linear
portion once run through the least squares formulation. Simply setting the true
huber loss as an objective formulation is disallowed in the ACADO framework,
requiring the following formulation, if one desired a true linear progression beyond
the constraint.

σ =

{√
1− kσy′ y′ < 0 (linear)√
exp (−y′kσ) else (exponential)

(8.12)

where

kσ = log

(
wσ

σ1

)
(8.13)

This formulation is not used here, as it adds unnecessary computations to both the
cost and especially the Jacobians due to the square roots.

Jacobian

To use the Huber constraint as a soft constraint on a variety of objectives, each with
possibly different numbers of other state/control dependencies, we can construct a
general Jacobian structure which can later be chained to any other objective specific
Jacobian. In the following, we will assume the objective y (x), the constraint y0 (x),
and the buffer region ∆y (x) may all be functions of the aircraft state such that

σ (x) = f
(
y′ (y (x) , y0 (x) ,∆y (x))

)
(8.14)

∂σ

∂x
=

∂σ

∂y′

(
∂y′

∂y

∂y

∂x
+
∂y′

∂y0

∂y0

∂x
+

∂y′

∂∆y

∂∆y

∂x

)
(8.15)

(σ)x = (σ)y′
((
y′
)
y

(y)x +
(
y′
)
y0

(y0)x +
(
y′
)
∆y

(∆y)x

)
(8.16)

where e.g. shorthand (y)x = ∂y
∂x

.
From (8.9) it follows

(σ)y′ =

{
−kσ y′ < 0 (linear)
−kσ exp (−y′kσ) else (exponential)

(8.17)

and from (8.11) (
y′
)
y

= ∆y−1 (8.18)(
y′
)
y0

= −∆y−1 (8.19)
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(
y′
)
∆y

= −y − y0

∆y2
(8.20)

(8.21)

Returning to (8.16)

(σ)x = (yσ)y′
(y)x − (y0)x − y′ (∆y)x

∆y
(8.22)

where (y)x, (y0)x, and (∆y)x must be provided for the given objective / state
dependencies.

3 Terrain Interpretation from Vision-based Elevation Maps

In this section we describe the vision-based mapping approach taken in this work
and how that map is interpreted as objective feedback for the NMPC optimization.

3.1 Vision-based Mapping from Fixed-Wing Aircraft

Vision based elevation mapping, using the flexible stereo vision pipeline from [28],
is employed to give our vehicle environmental awareness, on the fly. A densification
module takes as input the undistorted images of the left, right, and center camera
as well as the estimated center camera pose in world coordinates and the relative
camera pose of the right and left camera. For each stereo pair, a depth map can be
computed by rectifying the image and applying an efficient stereo block-matching
(BM) algorithm. The depth maps are then integrated into the world coordinates
by projecting every pixel of the depth map onto a 2.5D elevation map, following
the approaches outlined in [15] and [16]. For every cell in the grid map, a height
and covariance value is stored. With new measurements arriving, a Kalman Filter
update scheme is applied as follows:

ĥk =
ĥk−1Σm,k + hm,kΣk−1

Σm,k + Σk−1
(8.23)

w−1
h =

Σm,k + Σk−1

Σm,kΣk−1
(8.24)

where ĥk and w−1
h are the updated elevation estimate and its inverse uncertainty,

respectively, with elevation and variance priors ĥk−1, Σk−1 and measurements
hm,k, Σm,k.
While in this work, we will simulate the camera inputs in the Gazebo [41] and

RotorS [20] simulation environment, an image of the practical implementation of
this setup on the Techpod UAV is shown in Fig. 8.4.
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Figure 8.4: Flexible trinocular vision setup on the Techpod UAV. [28]

3.2 Occlusion Detection
From the elevation map, we can directly look-up terrain height at a given 2D
position. Bilinear interpolation is used within the given cell to ensure continuous
height measurements and further their Jacobian information with respect to position,
which is fed back to the NMPC.

However, early on in our development we realized height feedback alone was not
enough to provide safe avoidance of sharp increases in terrain (e.g. a wall, cliff, or
steep hillside), as our aircraft is moving fast enough that even the long horizons will
not pick up the elevation change in time to allow an avoidance maneuver. Increasing
the horizon length could potentially remedy this issue, but we are already pushing
the computation limits with the horizon size currently in use.

If we were to instead employ a 3D voxel map, e.g. using voxblox [63], we could also
retrieve Euclidean Signed Distance Fields (ESDFs) which can be directly formulated
into optimizable avoidance objectives. However, the processing time necessary for
ESDF construction, as the wave propagation acts over the entire 3D map, may
not be fast enough to provide the immediate distance feedback we require for fast
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moving fixed-wing UAVs. Other works have taken points directly from the point
cloud to check their trajectories against, though even when down sampling the
relevant points, the set grows quite large and further poses the issue how to down
sample without missing obstacles, as described in [2].

Here, we use efficient 2D ray casting, common in computer graphics, through our
existing elevation map from various origins close to the aircraft’s current position
to detect upcoming occlusions by checking for triangle-ray intersections in any
grid cells that rise above the ray’s height. The idea being that the point cloud
has already been considered in the generation of the elevation map, and we can
assume (at some larger discretization) that all obstacles are contained within this
representation.
To focus our search space (and computational efforts) on the most relevant

regions for the vehicle, rays are cast from NMPC horizon nodes in the direction
of each node’s current ground velocity, as well as perpendicular (left and right)
to that vector. The length of each ray corresponds to the inertial velocity of the
node; a function of ground speed for the “forward” ray, and a fixed distance for the
lateral rays. Using this scheme, our aim is to provide the NMPC with potential
upcoming terrain collisions in the direction that the optimizer is current planning
to fly. To save on computational requirements, we cast rays at a defined interval of
the horizon nodes (the ray casting interval). The subset of horizon nodes used for
ray casting are called ray casting nodes. Detected occlusions are stored in a short
time buffer (with corresponding occlusion buffer length), such that the information
is not immediately lost, but will timeout when we presumably move on from that
area or they are replaced by new detections. Figure 8.5 shows an illustration of the
ray casting and occlusion detection concept.

Figure 8.5: Ray casting and occlusion summing scheme. (Left) Forward, left, and
right rays cast from the vehicle at each ray casting node (p0-p3). (Right) For a
specific horizon node, detected occlusions from the nearest ray casting nodes up to
the occlusion window length are considered for RESDF construction.
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The next sections will detail how we translate these occlusions into an optimizable
objective for the NMPC.
Before moving on, we note this general concept of limited ray casting is not

particularly new. In [23], two point lidars are oriented out the side of a small delta
wing vehicle, measuring the distance from canyon walls to the aircraft and adapting
their waypoints accordingly to keep a stand off distance. However, one of the
largest differences between our approach and other vision (or lidar) -based reactive
avoidance approaches is that we have much more information at our disposal
from the stored vision populated elevation map. We are able to not only react to
the current depth or laser measurement, but actively plan due to our horizon’s
prediction of where the vehicle will go in the future, even as far as full turn arounds,
assuming we have previously mapped some area behind us. Additionally each
detection in our elevation map provides 3D slope information we can use as gradient
feedback for the avoidance objective.

3.3 Local “Relative” Euclidean Signed Distance Fields

The occlusion detection in the last section provides us with a small “point cloud” of
the most immediately relevant upcoming terrain. The triangle intersections further
provided a terrain normal for each point.

However, as elaborated in the previous sections, our optimizer needs a continuous
representation of the environment. While ESDFs would provide an ideal avoidance
objective format, we have found that distance metrics alone are not sufficient to
drive our high speed vehicle away from obstacles. Here, we develop a new concept
of “Relative” ESDFs (RESDFs), which are modulated by the aircraft speed and
direction. An illustration of an ESDF and corresponding RESDF for a 2D grid is
shown in Fig. 8.6.

Constructing Local RESDFs

Occlusions can be represented either purely as points po or, to utilize the terrain
gradient information included with each occlusion, as surfels, i.e. points with a
small surface of radius Rs about their normal vector n̂o. We define the radial
terrain distance (RTD) d and “relative” radial terrain distance d′.

d′ (p,v) =
d (p)− d0 (p,v)

∆d (p,v)
(8.25)

where distance constraint d0 and buffer region ∆d are functions of both position
and velocity. Then,

d (p) =

‖r−Rs
rq

‖rq‖
‖ ‖rq‖ > Rs (point)

‖projn̂o r‖ else (surface)
(8.26)
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Rel. Velocity (R)ESDF Inverse Truncated (R)ESDF

Figure 8.6: (R)ESDFs for an arbitrary 2D occupancy grid. White space in the
ESDFs correspond to occupied space and distance from the nearest wall is presented
from darker to lighter colors. The inverse truncated fields flip the color spectrum
and illustrate how an optimizer may view such a field, proximity to the walls
incurring higher costs. RESDFs show how the field is modulated for various relative
velocities, showcasing “relative” distances, as opposed to actual distances.

where r = po − p, and the projection of r onto the surfel plane is

rq = r− projn̂o r (8.27)
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where
projn̂o r = (r • n̂o) n̂o (8.28)

Note in the point description of occlusions, we still distinguish whether the vehicle
is “in front” or “behind” the point, corresponding to the surface normal, to neglect
consideration of points if the NMPC horizon is potentially momentarily inside
the terrain. Defining a surface within a limited range of the occlusion point also
helps to smooth out the resultant RESDF from our sparse detections by using the
terrain normal information. Sizing should be consistent with the elevation map
discretization.

The dynamic constraint d0 (p,v) and delta ∆d (p,v) are designed as

d0 (p,v) = d0,v=0 + kd,0
vrel (p,v)2

g tanφmax
(8.29)

∆d (p,v) = ∆dv=0 + kd,∆
vrel (p,v)2

g tanφmax
(8.30)

where d0,v=0 and ∆d0,v=0 are the desired nominal terrain offset and delta, respec-
tively, at zero speed. kd,0 and kd,∆ are multiples of the minimum turn radius Rmin
w.r.t. the occlusion at the current relative speed vrel.

Rmin =
vrel (p,v)2

g tanφmax
(8.31)

vrel =

{
vG • d̂ vrel ≥ 0

0 else
(8.32)

A sample based approach is used to construct the local RESDF at a given aircraft
position from the set of occlusions, where the minimum relative terrain distance
out of the samples is then applied.

Translating RESDFs to Optimization Feedback

At this point, one may notice a similarity between the relative terrain distance d′
formulation and the normalized Huber constraint input y′ from Section 2.4. This
relation can be exploited to directly translate the relative terrain distance into an
optimizable cost for the controller.
The full cost (using the Huber formulation) is calculated at each sample, still

taking the minimum relative distance (maximum cost) of all the samples, but
evaluating a weighted (by the sample costs) sum of all sample Jacobians. Note
that if we took only the Jacobians corresponding to the minimum relative distance
at each time step, the feedback could become very noisy. The resulting average
Jacobian is then representative of the sampled cost field, and somewhat “filtered”
over time by the averaging operation.

Computational cost can be further reduced by using a less expensive operation for
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the exponential component of the Huber constraint, in fact reverting to the original
quadratic Huber formulation. A ray must be cast to obtain each sample and for
computational efficiency, is only extended slightly more than the corresponding
speed dependent constraint and delta terms. This effectively provides us with a
truncated RESDF. As the truncated field anyway loses gradient information beyond
the delta boundary, in this case, the quadratic Huber formulation is no worse than
the exponential.

The sample quadratic Huber constraint cost for RTD takes the form:

σd =


1− 2d′ d′ < 0 (linear)
(1− d′)2 d′ < 1 (quadratic)
0 else

(8.33)

and corresponding sample Jacobian:

(σd)d′ =


−2 d′ < 0 (linear)
−2 (1− d′) d′ < 1 (quadratic)
0 else

(8.34)

Finally, the sample Jacobians are combined in a weighted sum:

¯(σd)x =

nsamples∑
i

(σd)x,i σd,i

nsamples∑
i

σd,i

(8.35)

where
nsamples∑

i
σd,i 6= 0 and ¯(σd)x is the (weighted) average Jacobian of the Huber

constraint cost with respect to an arbitrary state x.
A pseudo algorithm for the objective formulation is given in Algorithm 2. Descrip-

tions of several settings related to the occlusion detector and RESDF construction
algorithm are summarized in Table 8.1.

Remark. Why use a soft constraint on radial terrain distance? Primarily, we
run into a similar issue as noted in Section 2.4 for airspeed or angle of attack, that
we fully expect occlusions to be popping up where they previously weren’t within
the latter nodes of the horizon which may at first violate our constraints. Using a
soft constraint heavily penalizes this occurrence, but allows the optimizer a more
relaxed path back to safe spaces.

In the end, we end up with an output somewhat similar to what voxblox would
have given, but something of a “poor man’s” implementation, where only the local
distance field is derived within a “slice” on the plane created by our current horizon
and radial ray projections. Further, our RTD cost is terrain relative velocity
dependent, which is not feasible to construct within an incremental ESDF builder.
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Algorithm 2 Radial terrain distance objective cost construction. This process
is run at each NMPC horizon node.
for all occlusion detections po in occlusion window and buffer do

r = po − p
if (r • n̂o) < 0 then

d = projn̂o r
rq = r− d
if ‖rq‖ > Rs then
recalculate: d = r−Rs

rq

‖rq‖
Calculate distance norm and Jacobian (without surface normal depen-
dency)

else
Calculate distance norm and Jacobian (with surface normal dependency)

end if
end if

end for
Take the maximum objective cost from all samples.
Calculate weighted average of all sample cost Jacobians.

Table 8.1: Occlusion detection parameters.
Setting Description
Ray casting interval The interval between horizon nodes from

which rays are cast (defining the ray casting
nodes).

Occlusion window length The number of ray casting nodes included
in the RESDF construction for a given hori-
zon node. The window is centered at the
horizon node in consideration. The nearest
ray nodes, adding to the occlusion window
length, are included.

Occlusion buffer length The number of past occlusion detections
per ray casting node which are stored. The
buffer is FIFO, the oldest values getting
replaced either with new information or
when timed out.

We note the velocity relative augmentation of the ESDF presented here is similar
to the “morphing potential field” concept proposed in [80] and extended to 3D
in [81]. However, our approach applies to generalized terrain of any shape, as
oppose to simple shapes like spheres or cylinders.
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3.4 Filtering Terrain Feedback
As the elevation map will be constantly changing with newer vision updates arriving
every instant and terrain may be inherently discrete, the incoming data needs to
be processed before reaching the optimizer. The short buffer of previous occlusion
detections used within the cost and gradient sums for the RESDFs helps in filtering
out some of the terrain noise. However, an additional first order time delay τterr is
included on the incoming cost and Jacobian calculations for both the HAG and
RTD.

4 NMPC Problem Definition

This section formalizes the model, objectives, and constraints of the NMPC.

4.1 Model
The model used for control in this brief mostly follows that of the one presented in
Paper V, though with some adjustments, in particular towards reducing the order
of the model, which we will describe here.
States x = [pn, pe, pd, vA, γ, ξ, φ, θ, np] are propagated within the MPC, driven

by controls u = [uT , φref, θref] using the following differential equations:

ṗn = vA cos γ cos ξ + vW,n (8.36)
ṗe = vA cos γ sin ξ + vW,e (8.37)
ṗd = −vA sin γ + vW,d (8.38)

v̇A =
1

m
(T cosα−D)− g sin γ (8.39)

γ̇ =
1

mvA
[(T sinα+ L) cosφ−mg cos γ] (8.40)

ξ̇ = sinφ
T sinα+ L

mvA cos γ
(8.41)

φ̇ =
kφφref − φ

τφ
(8.42)

θ̇ =
kθθref − θ

τθ
(8.43)

ṅp =
un − np
τn

(8.44)

where the state vector contains 3D inertial position p, air mass relative airspeed
vA, flight path angle γ, and heading ξ, roll and pitch angles φ and θ, and propeller
speed np.
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Aerodynamic and thrusting forces are provided in equations (8.45)- (8.47):

T = ρnp
2Dp

4

(
cT0

+ cT1

vp

npDp

)
(8.45)

D = q̄S
(
cD0

+ cDαα+ cD
α2
α2
)

(8.46)

L = q̄S
(
cL0

+ cLαα
)

(8.47)

where ρ is the density of dry air, q̄ = 0.5ρvA
2 is the dynamic pressure, S is the wing

planform area, Dp is the diameter of the propeller, and
[
cT0 , cT1

]
,
[
cD0 , cDα , cDα2

]
,

and
[
cL0

, cLα
]
are identifiable coefficients for thrust, drag, and lift. As in Paper V,

aerodynamic and thrusting moments are neglected, maintaining the quasi-steady
assumption from the control augmented model formulation.

Thrust

A change in our model, from Paper V, can be seen in (8.45) and (8.44). The
propeller thrust model in (8.45) approximates the axial force as a function of the
advance ratio (c.f. [77]). Normal propeller force is neglected.
In (8.44), np refers to the propeller speed (here Techpod is a single pusher

propeller) in revolutions per second. We use a first order spool-up lag from the
commanded propeller speed input un. As the PX4 operates on normalized throttle
settings uT ∈ [0, 1], a mapping can be generated between uT and un:

un =
(
n0,min + uT

(
nmax − n0,min

)) (
1− σvp

)
+

(n0,max + uT (nmax − n0,max))σvp
(8.48)

where vp is the axial component of the incoming airflow, simplified here to be
vp = vA cos (α− εT ), εT is the propeller axis offset from the body x-axis. Propeller
speeds n0,min and n0,max are the “zero-thrust” values for a user defined minimum
and maximum incoming flow speeds vp,min and vp,max, respectively. These values
are backed out of (8.45), post identification of the thrust coefficients.

n0,min =
− cT1

vp,min/Dprop +
√(

cT1
vp,min/Dprop

)2 − 4cT0

2cT0

(8.49)

n0,max =
− cT1

vp,max/Dprop +
√(

cT1
vp,max/Dprop

)2 − 4cT0

2cT0

(8.50)

σvp transitions the mapping scale from the propeller speed range at minimum and
maximum flow speeds; nmax being the maximum propeller speed the motor can
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command (measured statically at zero flow on the ground).

σvp =
vp − vp,min

vp,max − vp,min
(8.51)

The advantage of such a mapping becomes clear considering the control constraint
formulation, where the NMPC commands uT (as to directly feed it to the PX4), and
may be limited by simple static bounds of 0 and 1. The mapping is then implemented
within the model such that controller is still aware of the speed dependence on
thrust force, but additional evaluation of dynamics on the constraints are then not
necessary.

First Order Attitude Response Dynamics

An additional change is the removal of body angular rates, previously present in
the model from Paper V. In their place, we use simple first order control augmented
models for the attitude response dynamics (8.42)- (8.43). As we wish to add several
new objectives to the controller in this brief, any computational cost savings we
can make will help.
Though having angular rates available for damping feedback was beneficial

in Paper V, we found that the additional prediction errors introduced by using
first order approximations were small enough to neglect these states, so long
as sufficient trim elevator scheduling per airspeed (and if possible roll angle) is
implemented within the low-level attitude controller. Examples of the first order
control augmented attitude response formulation were shown laterally in Paper IV
as well as in a newer work we conducted on NMPC for fixed-wing airborne wind
energy [83]. The identification process remains nearly identical to that proposed in
Paper V, here with a reduced parameter set

[
kφ, τφ, kθ, τθ

]
.

4.2 Objectives

The objective vector consists of several state reference tracking terms, control
penalization, and soft constraints:

y = [pn, pe, vA, eγ , ξ, σvA , σα, σh, σd, uT , φref, θref]
T (8.52)

with objective reference vector

yref =
[
pn,ref, pe,ref, vA,ref, 0, ξref, 0, 0, 0, 0, uT,trim, φff, θtrim

]T (8.53)

where end term objective yN = y1−9 and end term objective reference yN,ref =
yref1−9

.
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Reference Trajectories

Lateral-directional trajectory generation (see Section 2.2) provides pn,ref, pe,ref,
vA,ref, and φff, with vA,ref constrained between vA,nom and vA,max. Longitudinal
guidance (Section 2.3) is embedded into the objective model, producing flight path
error eγ = γref − γ internally.

Soft Constraints

σvA is a lower bounded exponential Huber constraint on airspeed vA with lower
bound vA,0. σα is an upper and lower bounded exponential Huber constraint on
the angle of attack α with upper constraint α+, lower constraint α−. σh is a lower
bounded exponential Huber constraint on the HAG, and σd is a lower bounded
quadratic Huber constraint on RTD.

Control Penalization

Control signals uT and θref are regulated towards fixed trims uT,trim and θtrim,
respectively. Additional hard upper and lower constraints are applied to the NMPC
controls uT , φref, θref.

4.3 Objective Weight Prioritization
To organize the focus of the NMPC on the many competing objectives we task it
to optimize, we prioritize several objectives by diminishing their weights relative
to others when close to terrain. Towards this end, the positive definite weighting
matrix Q(t) is variable over the horizon length, varied from nominal weighting Q0.
Inverse priorities for HAG and RTD are defined as functions of their respective

normalized objectives (pre-weighting):

σh,prio = constrain
(
h′, 0, 1

)
(8.54)

σd,prio = constrain
(
d′, 0, 1

)
(8.55)

where the term “inverse” implies that the objective has higher priority when the
value approaches zero. The inverse priority product at each horizon node is used
for de-weighting

σprio(t) = σh,prio(t)σd,prio(t) (8.56)

where individual weights

qpn (t) = σprio(t)q0,pn (8.57)
qpe (t) = σprio(t)q0,pe (8.58)
qγ(t) = σprio(t)q0,γ (8.59)
qξ(t) = σprio(t)q0,ξ (8.60)
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and objective reference

yref,vA (t) = vA,ref(t)σprio(t) + (1− σprio(t))vA,ref(t) (8.61)
(8.62)

Weight prioritization occurs during the preparation step of the NMPC iteration
loop. First, all objectives and Jacobians are calculated on each horizon node given
the current measured state and previous state horizon. Then, we scale the above
weights as necessary before proceeding to the feedback step, where the multiple
shooting nodes are linearized and forwarded to the solver (see more details on the
optimizer in the next section).

4.4 Optimization
As in Papers IV and V, we use the ACADO Toolkit [30] for the generation of a fast
C code based nonlinear solver and implicit fourth order Runge-Kutta integration
scheme. A direct multiple shooting technique is used to solve the optimal control
problem (OCP), where dynamics, control action, and inequality constraints are
discretized by Tnmpc over a time grid of a given horizon length Nnmpc. A boundary
value problem is solved within each interval and additional continuity constraints are
imposed. Sequential Quadratic Programming (SQP) is used to solve the individual
QPs, using the active set method implemented in the qpOASES2 solver.

The OCP takes the continuous time form:

min
x,u

∫ T

t=0

(
(y(t)− yref(t))

T Q(t) (y(t)− yref(t))
)
dt

+
(
yN (T )− yN,ref(T )

)T
QN (T )

(
yN (T )− yN,ref(T )

)
subject to ẋ = f(x,u),

u(t) ∈ U,
x(0) = x (t0)

(8.63)

5 Hardware-in-the-Loop Simulation

5.1 Simulation Environment
Critical for initial testing of dangerous flight operations (such as the proposed near-
terrain operation) is a high fidelity simulation environment capable of mimicking
real-world sensors and vehicle models. The employed flight simulation framework is
based on the Gazebo multi-robot simulator [41] and RotorS [20].
RotorS implements the basic functionality required to simulate multi-rotor and

fixed-wing Micro Aerial Vehicles (MAV)s within the Gazebo simulator. It provides
propulsion-, lift-/drag- and sensor models that can be added to the simulated vehicle

2http://www.qpOASES.org/
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in order to generate aerodynamic forces/torques and stream sensor signals based on
the simulated state, respectively. RotorS ’ aerodynamics have lately been extended
to increase fidelity, to allow for a modular approach to simulating aerodynamic
wrenches and to model the interaction between propulsive units and airfoils.

Fixed-Wing Aerodynamics/Propulsion

In the selected simulation approach, the aircraft is composed of multiple elements
which are categorized as either ‘airfoil’, ‘body’ or ‘propeller’. Aerodynamic forces
and -torques are modeled independently for every element and applied to the aircraft
at the element’s center of pressure. The only exception to the independence of
elements is given by the modeled interaction between the slipstream generated by
propulsive elements and elements affected thereof. Fig.8.7 illustrates the partitioning
of the Techpod UAV into multiple elements as well as exemplary aerodynamic
forces generated by each of them.

Figure 8.7: Element-based composition of the aerodynamic model for the Techpod
UAV. Left: Airfoil segments are shown in green, the single body element in red
and the propeller in blue. The points indicate each element’s center of pressure at
which the aerodynamic forces and torques are resolved based on the local inflow
condition, c.f. right fig. The red colored airfoil segments indicate stalled airflow,
here due to excessive rolling.

Overall, this approach allows for a flexible and modular ‘bottom-up’ composition
of an aerodynamic model which is, furthermore, computationally lightweight and
therefore suited for real-time simulation in, e.g., a hardware-in-the-loop (HITL)
setup.

It is important to note that the presented approach neglects the mutual influence
between airfoils and/or bodies. Hence, effects such as e.g. induced drag or wing-
fuselage interference do not implicitly emerge. Instead, they need to be included via
corrections in the model’s underlying aerodynamic parameters. More sophisticated
lifting-line or vortex-lattice/panel methods are able to model these effects to
some extent but are less modular and, more importantly, can get computationally
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prohibitive when considering a potential real-time simulation requirement.
An actuator-level, nonlinear time-domain system identification from flight data

was conducted in order to compare and “tailor” the simulated Techpod model
towards a closer match to the dynamics we see in flight. Though it should be noted
that the “lumped sum” identification parameters typically observable in common
flight path reconstruction techniques are not trivially comparable to the more
detailed RotorS model used here. Consequently, the simulation model can only be
said “qualitatively” comparable to the real-world Techpod UAV, but is sufficiently
high fidelity for our purposes.

System Overview

In the results that follow, low-level control (attitude/rates) and state estimation
are performed on a PX4 Autopilot, fed by (artificially noisy) simulations of sensor
feedback from the Gazebo/RotorS simulation environment. Images of the Gazebo
world from the wing tips are fed to the vision pipeline at ca. 10 Hz. The elevation
grid map is discretized to 5 m cells. Occlusion detection, trajectory generation, and
the NMPC iteration step are performed single thread, sequential process run at
10 Hz. A general overview of the full system which feeds (and is fed by) the NMPC
is given in Fig. 8.8.

Flexible Stereo
Vision

Occlusion
Detector

NMPC PX4 UAV

Actuator
Commands

Sensor
Measurements

Sensor
Measurements

State Estimates

Elevation
Mapper

Depth MapElevation Map

Elevation Map

Occlusion
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Trajectory
Generation

State Estimates

Attitude and Thrust
Commands

State Estimates

Reference
Trajectories

Desired Path
Segments

State Predictions

Figure 8.8: Full system diagram containing vision-based sensor input, elevation
mapping, occlusion detection, trajectory generation, nonlinear model predictive
control, and low-level attitude control and state estimation (running on the PX4
autopilot).

As this research is in its preliminary stages, all high-level control (NMPC)
and vision algorithms are running in ROS (in tandem with the real-time Gazebo
simulation environment) on a Lenovo Thinkpad P-50 laptop (2.8-GHz Intel Xeon E3-
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1505M v5 CPU, 16GB RAM). Performance checks on smaller computer platforms
such as the Intel Up Squared (2.4GHz CPU, 8GB RAM) for operation on-board
the Techpod UAV are ongoing, e.g. determining maximum bounds on the MPC
horizon length and occlusion detector parameters as well as optimization of the
vision pipeline.

5.2 Results & Discussion
To evaluate the functionality of the terrain feedback objective developed in this
brief, a scenario was set up in a Gazebo world map produced from a hill side in
Hinwil, Switerzland where the Techpod is commanded to follow a “poorly planned”
loiter path which nearly intersects with the elevated terrain. Screenshots from the
simulated hillside, resulting vision-based elevation map, a snapshot of the left wing
camera and corresponding disparity map (generated comparing the left and right
wing tip cameras) are shown in Fig. 8.9. Parameters and weights used for the
NMPC and guidance (trajectory generation) are tabulated in Table 8.2. Settings
for the occlusion detector listed in Table 8.3.

Table 8.2: Control and guidance parameters used for HITL simulation. Nominal
end term weights are identical to their corresponding nominal horizon weights,
Q0,N = Q0,1-9. σ1 = 0.001 for all soft constraints. All lateral-directional guidance
parameters not listed are identical to those in Paper III.

NMPC Weights Soft Constraints Misc.
Objective q0,y Param Value Param Value

pn 20 vA,0 12 m s−1 vA,nom 14 m s−1

pe 20 ∆vA 1.5 m s−1 vA,max 18 m s−1

vA 300 α+ 7° uT,trim 0.4
γ 900 α− −6° θref,trim 1°
ξ 300 ∆α 3° uT,constr [0, 1]

σvA 108 h0 10 m φcontr [−35, 35]°
σα 108 ∆h 20 m θconstr [−15, 25]°
σh 107 d0,v=0 10 m γclimb 15°
σd 107 ∆dv=0 20 m γsink −11°
uT 70 kd,0 0.5 eb,lon 1 m
φref 100 kd,∆ 1 Nnmpc 50
θref 400 τterr 0.5 s Tnmpc 0.1 s

Table 8.3: Occlusion detection settings used in HITL simulation.
Setting Value

ray casting interval 5
occlusion window length 10
occlusion buffer length 5

surfel radius 5 m
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Figure 8.9: Screenshots during an avoidance maneuver from the Gazebo simulated
hillside (top), resulting vision-based elevation map, displayed in rviz (second from
top), a snapshot of the left wing camera (bottom left), and corresponding disparity
map (generated comparing the left and right wing tip cameras) (bottom right). The
white and red trajectories shown in the rviz screenshot are the MPC predicted state
and reference state trajectories, respectively. Note the predicted horizon states veer
from the path (gray circle) as the controller is actively avoiding the terrain.
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In Fig. 8.10 the aircraft’s position trajectory as well as MPC state horizons,
position reference trajectories, and the detected occlusions on the hillside throughout
the maneuver are shown. As the aircraft approaches the hill, the first occlusions
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Figure 8.10: Avoidance maneuver; aircraft position, reference trajectories, pre-
dicted horizons, and all occlusion detections made throughout the maneuver by
either the forward or left ray.
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it detects are on the South facing slope, leading to the left veering motion plans
at first, until the reference trajectory error (trajectories traveling along the loiter
to the North) eventually provides enough incentive for the optimizer to attempt
turning right, allowing more occlusion detections on the South-Eastern hill face
which further encourage the rightward avoidance maneuver. Once the aircraft clears
the hillside obstacle and the path is again unobstructed, the vehicle returns to the
path.

Particularly important from this simulation is the illumination of some prospective
robustness to the “split decision” problem gradient descent approaches to avoidance
scenarios often face. I.e., the aircraft may face close to equally viable avoidance
directions, with respect to the cost function, and each new measurement may tip
the scale one way or the other. Sampling based motion planners would typically
be a prudent way to handle such a scenario, but we can see here that including
the “moving” reference trajectory generation in the formulation aided in forcing the
optimizer to make a decision without any other external aid. Of course, this is only
one scenario, and we should not extrapolate that this behavior will always result in
any given obstacle laden predicament.
Looking deeper into the objective performance throughout the maneuver, we

can see in Figures 8.11 and 8.12 that the nominal RTD and HAG constraints were
respected. Additionally, Figures 8.11 and 8.13 showcase the effect of filtering the
incoming terrain distance costs and cost Jacobians.
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Figure 8.11: Avoidance maneuver; (top) the minimum terrain distance at each
instance taken from all detected occlusions through the maneuver. (bottom) Squared
RTD cost at horizon node 45, both filtered and raw.
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Despite the mostly smooth control response during the avoidance maneuver, the
raw costs and Jacobians show much noisier/jumpy behavior which would have
resulted in more aggressive control action, possibly destabilizing the aircraft.

Beyond the terrain objectives, Fig. 8.14 shows both airspeed and angle of attack
constraints respected. Control outputs and attitude responses are shown in Fig. 8.15.
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Figure 8.14: Avoidance maneuver; airspeed and AoA are kept within their soft
constrained bounds during the maneuver.

6 Conclusions

Likely evident, due to the length and widely varied topics of this “brief”, is that
combining real-time sensing and mapping of large scale, generalized environments
with fast local re-planning algorithms for efficient and safe near terrain fixed-wing
flight is decidedly non-trivial.

6.1 Summary
Section 2 showcased the some of the struggles of implementing long horizon opti-
mizations for fixed-wing vehicles. We detailed several significant issues and some
contained corner cases from our previous formulations and proposed remedies. In
particular, a wind-aware lateral-directional trajectory generation algorithm was
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Figure 8.15: Avoidance maneuver; optimized control references and the PX4
attitude response – note the short oscillations in roll when the trajectory reference
errors are overtaking the preliminary RTD costs (see Fig. 8.10).

constructed from our wind-robust guidance logic (Part A), providing a reference set
of positions and air mass relative speeds and headings for the NMPC to track. Ver-
tical wind estimates were additionally incorporated into our longitudinal guidance
law, providing an air mass relative flight path setpoint.

We improved our soft constraint formulation from Paper V, converting the piece-
wise quadratic cost into a one-sided exponential Huber loss. The new soft constraint
formulation provides gradient information at every point in the soft constrained
state space, reducing oscillatory control feedback when the state approaches the
bound.

Section 3 presents a preliminary new approach to generalized terrain interpreta-
tion from vision-based elevation maps, tailored for implementation with fixed-wing
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UAVs utilizing optimization based controllers. HAG look-ups with bilinear interpo-
lation were used to provide a vertical terrain avoidance constraint on the vehicle.
Radial terrain interpretation was accomplished using an occlusion detector designed
to efficiently provide a small list of terrain point and surface normals in the most
relevant areas of the elevation map which we could then use to construct novel,
relative velocity dependent, “relative” ESDFs. The local RESDFs were molded
into soft Huber constraints, and input to the NMPC optimization as radial ter-
rain distance penalties, importantly providing terrain feedback weighted on those
occlusions which the aircraft is most quickly approaching.

Our control augmented model formulation was reduced, allowing the elimination
of three states from the optimization and easing identification complexity with
reduced parameterization. We further introduced an enhanced thrust model.
Combining all objectives together in the optimizer was accomplished using a

weight prioritization scheme which devalues certain objective references whenever
relative proximity to the terrain increases.

Finally, our complete terrain avoidance framework was evaluated in HITL simu-
lation with a high-fidelity model of the Techpod UAV. The occlusion detector was
able to identify relevant surfels from which the optimizer then steered the aircraft
away form elevated terrain obtruding on its desired path, all while satisfying all
soft objective bounds. Our filtering approach for the terrain costs and Jacobians
was further demonstrated to be an important feature, providing less noisy feedback
which could have otherwise destabilized the optimizer.

6.2 Future Work
While our initial look into the terrain avoidance problem for fixed-wing UAVs
reaped some insightful results, the preliminary concepts for environment-aware
control presented herein are exactly that, preliminary, and many more avenues
exist to explore within this research. Immediate technical aspects that must be
born out include computational complexity analysis of the myriad of parameter
settings/combinations for the occlusion detector and how these interact with varying
horizon lengths of the NMPC, initialization and/or representation of unseen space
in the horizon by either map priors or free vs. occupied assumptions, and field
validation of all algorithms running onboard the vehicle. A conceptual outlook on
what we find to be the most important and/or interesting directions for extensions
and future work, including some ongoing work we are indeed already pursuing, may
be found in Chapter 9.
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Chapter9
Conclusion & Outlook

In this thesis, we developed practical control and local re-planning strategies for
small, low-flying fixed-wing UAVs towards enabling safe operation in strong winds
and near uncertain terrain. In this chapter, we summarize the core contribu-
tions from the cumulative developments and sketch some potential future research
directions.

9.1 Contributions

Handling High Winds
We developed a simple, safe, and computationally efficient guidance strategy for
navigation of small, fixed-wing UAVs in arbitrarily strong wind fields. To the best of
our knowledge, it was the first with specific consideration of excess winds, i.e. wind
speeds that exceed the vehicle’s nominal airspeed. The nonlinear controller guaran-
tees convergence to a safe and stable vehicle configuration with respect to the wind
field while preserving some tracking performance with respect to the path target,
and command continuity is maintained throughout all state transitions, avoiding
discrete switching which could degrade vehicle flight behavior. We expanded the
control law by developing an energy efficient airspeed reference compensation logic
which not only mitigates, but also actively works against excess winds which would
otherwise cause the aircraft to “run-away”. Extensive field testing was conducted,
demonstrating track keeping errors of less than 1 m consistently maintained during
gusting excess winds over various mountainous regions in Switzerland. A coupled
approach to airspeed and heading reference commands was further developed with
a more principled consideration of airspeed reference minimization. With this
new approach we additionally provided a simulation comparison to the previous
decoupled approach in static and dynamic winds showcasing, qualitatively, improved
airspeed reference efficiency and track keeping performance, potentially enabling
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battery/fuel savings on long endurance flights.

Model Predictive Control & Local Re-Planning
We proposed a control augmented modeling strategy as a means of capturing
low-level autopilot response dynamics and quasi-steady aerodynamic and thrusting
behavior of fixed-wing UAVs using simple and safe system identification procedures.
The models were shown predictive on the order of tens of seconds, motivating
their utility for use in long-horizon model predictive controllers. NMPC objective
formulations particular to fixed-wing aircraft were designed achieving simultaneous
three-dimensional Dubins Aircraft path segment following, airspeed stabilization,
and stall prevention as well as the ability to adapt to control failures and strong wind
disturbances. We conceptually evaluated the potential of incorporating obstacles
into the NMPC formulation in the form of generalized terrain feedback. Real-time
vision-based elevation maps were used to provide a 2.5D world representation
to the aircraft, providing a “simulated” environment for the local re-planner to
optimize within. The map was bilinearly interpolated for height feedback, and we
designed an efficient ray casting approach for detection of forward (line of flight)
and lateral occlusions. We proposed a novel “relative” Euclidean Signed Distance
Field (RESDF) formulation as a function of the relative velocity between the vehicle
and occlusion and developed a method to translate these RESDFs into optimizable
soft constraints appended to the NMPC objective function. Finally, a preliminary
example of the full local re-planning system acting to avoid an obstructing hillside
was demonstrated in hardware-in-the-loop (HITL) simulation, all while respecting
soft angle of attack and airspeed constraints.

9.2 Research Outlook

Our stated vision at the outset of this thesis was a progression towards fully
autonomous small, fixed-wing UAVs able to reliably enter the the wild, safely
navigating in strong winds and complex terrain to perform their missions. With the
wind-robust control and multi-objective local re-planning strategies we’ve developed
throughout this work, we believe we’ve made a significant step towards these goals.
However, as always, there is much we can improve, and many other avenues to
explore. Our recommendations for the next steps forward specific to each part of
the thesis are listed below, followed by some potential future remote fixed-wing
applications to which we hope to expand our work.

9.2.1 Handling High Winds
Robustification to Vertical Wind While we were able to present an overall effective

solution to the problem of two-dimensional wind robust guidance in Part A
of the thesis, one aspect that remains is the vertical dimension. Up and down
drafts in e.g. thermals or more critically rotors near hillsides were shown even
in Paper II to cause problems for the aircraft, leading in the worst case to
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momentary stall. 3D wind estimation techniques and low-level controllers
capable of handling angle of attack constraints should be employed.

Wind Prediction Most of our efforts in this thesis, even the title of a chapter, was
on “fighting” excess winds. However, if we look to nature, birds often take
advantage of thermals or ridge updrafts to save energy. Some work has already
been done on reactively tracking thermal updrafts [61], and more recently on
predicting wind [1]. Considering wind as ally, as oppose to a foe, should be
investigated, potentially incorporating not only feedback, but feed-forward
wind predictions to either the the local re-planner or a separate trajectory
generation unit for more optimized near terrain maneuvering.

9.2.2 Model Predictive Control and Local Re-planning
Multiple Obstacle Abstractions We only focused in this work on terrain avoidance.

However, small fixed-wing UAVs may indeed encounter obstacles that will be
missed by the elevation map, e.g. power lines, telephone poles. A parallel
running algorithm similar to the “pushbroom stereo” in [2] could potentially
be used to identify “likely misses” while populating the elevation map, and
provide these as individual point obstacles we could incorporate into the
re-planner separately.

Trim Maps, or Separate Loops Tuning the multi-objective NMPC, along with all
peripheral algorithms is challenging. Especially in the longitudinal axis. Either
supplying trim maps relating airspeed, angle of attack, pitch and throttle
to the guidance logic, or down-grading longitudinal states to a lower-level
controller could help to focus the optimization. However, in the latter case, a
new control augmented model for the airspeed inclusive low-level response
would need to be developed.

Trajectory Libraries Higher-level trajectory libraries or planners, operating at a
reduced rate, acting in tandem to the NMPC, would attack the avoidance
problem from two angles, a reasonable guess at a dynamic maneuver we
could attempt and model-aware NMPC with terrain feedback to “dynamically
smooth” the kinematic plan.

Exploiting Map Layers The elevation mapping approach used in this work also
provides uncertainty information on the grid cells it populates; incorporating
this uncertainty in the local re-planner could enhance robustness of avoidance
maneuvers. Additional map layers could be populated with other high-level
information derived from vision-based classifiers running on-board (see [26]);
e.g. surface roughness, proximity to edges, or generally “safeness” for landing,
and used to re-optimize landing targets online.
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9.2.3 Future Applications
Fixed-Wing Payload Drop & Recovery Fig. 9.1 shows a photo from a recent ASL

campaign to Gorner Glacier, Switzerland, where a multi-copter is dropping a
GNSS unit onto the crevassed glacier surface. While in situ sensor placement
is a natural task for a hover-capable vehicle, for large sensor networks or very
remote drop locations, higher-endurance, longer-range fixed-wing UAVs would
be required. However, precise dropping and recovery requires the plane to fly
in close proximity to the possibly obstacle laden, variable terrain (see glacier
surroundings), executing highly dynamic maneuvers, and simultaneously
mitigating the abrupt mass changes without letting the aircraft stall. We
see this task as an excellent challenge for our terrain-aware local re-planning
framework, where payload related objectives could additionally be included in
the optimization. Fig. 9.1 additionally shows a rendering of how a fixed-wing
payload recovery may look.

Deep Stall In this thesis, we placed a significant priority on constraining the angle
of attack to a safe, non-stalled region. In contrast, Fig. 9.1, shows the Easy
Glider test UAV executing a deep stall descent, near 60° angle of attack!. Deep
stall is a stable region far beyond the stall point where rapid air mass relative
descents can be achieved using an all moving tail. The transition into or out
of deep stall is a highly nonlinear process, including state and time hysteresis.
However, with adequate modeling of these effects, NMPC could potentially be
utilized to optimize these state transitions for e.g. landing in areas obstructed
by tall trees or structures, potentially expanding the operational bounds of
fixed-wing vehicles where otherwise only hover-capable platforms could go.
We believe our work on wind relative guidance in this thesis could also be
utilized for deep stall guidance, as the horizontal component of the airspeed
is vastly reduced, and mimics our excess wind conditions. Efficient or optimal
planning in strong winds, obstacle avoidance, and with additional stalled
states provides many research avenues to explore.

Figure 9.1: Future fixed-wing UAV applications: (Left) Dropping a GNSS station
on the Gorner Glacier, Switzerland, from a MAV. (Center) Rendering of fixed-wing
payload recovery. (Right) The Easy Glider UAV in stablized deep stall.
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